Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35888199

RESUMO

A new multilayer composite sheet consisting of Fe/Mg/Fe was fabricated from galvanized steels and Mg alloy sheets via roll cladding. The clad steel improved the Mg surface hardness from HV 65 to HV 132. Bonding occurred as the reduction ratios increased up to over 10%. Investigation of the microstructure of the Mg/steel interface revealed a 5 µm- to 10 µm-thick transition layer between Mg and each steel sheet, consisting of Zn and an intermetallic compound (0.97Mg-0.03Zn). Zinc coating from the galvanized steel sheet improved the metallurgical bonding between Mg and Fe by forming new intermetallic phases.

2.
Materials (Basel) ; 12(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151319

RESUMO

Friction stir welding can realize high-strength aluminum alloy joints. In this study, friction stir welding with cover sheet (CFSW) is proposed to solve the thinning caused by the tool shoulder and reduce the heat-affected zone. The microstructures and mechanical properties of CFWS were also studied. After the cover sheet was added, a reinforcement was formed on the weld surface, which compensated the thinning caused by the friction of the tool shoulder. As the cover absorbed heat from the shoulder, the width of the heat-affected zone of the welded sheet became smaller than the diameter of the shoulder. Without milling the cover sheet, the tensile strength of the 5754 aluminum alloy joint reached 94% of that of the base metal. The fracture position was the heat-affected zone of the forward-side weld joint. After the cover sheet was added, the stress concentration shifted from the thinning area of traditional friction stir welding to the outside of the welding seam.

3.
Materials (Basel) ; 12(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934543

RESUMO

Tailored heat-treated blank is a special kind of sheet, and the plastic forming ability can be improved. In this work, the poor room-temperature plasticity of a tailored magnesium alloy blank was address through arc heat treatment. The formability of the material was enhanced through local modification with arc pretreatment. The plasticity of the tailored arc-heat-treated blank was verified through the V-bending test. The microstructure and mechanical properties of the blank were tested, and the mechanisms underlying its improved deformability were analyzed. The bendability of the blank first increased and then decreased as heat input increased. The maximum V-bending ability of the arc-heat-treated blank increased by 88% relative to that of the untreated blank. Although springback decreased under increasing heat input, the local strength and elastic modulus of the alloy blank were equivalent to those of the base metal. This result indicated that the springback resistance of the material did not improve. The back of the blank treated under the optimal parameters comprised heat-affected zones with good plasticity. Recrystallization and grain growth occurred in the heat-affected zones. The blank exhibited reduced hardness and improved malleability. When the heat input was further increased, however, a semi-melting zone formed on the lower surface of the blank. The formation of this zone resulted in the precipitation of intermetallic compounds from the crystal phase and increased the hardness of the blank. It also decreased the plasticity and malleability of the blank.

4.
Materials (Basel) ; 7(5): 3735-3757, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28788646

RESUMO

Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...