Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(6): e0281522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318013

RESUMO

Toxin-antitoxin (TA) systems are ubiquitous genetic elements in prokaryotes, but their biological importance is poorly understood. Mycobacterium smegmatis contains eight putative TA systems. Previously, seven TAs have been studied, with five of them being verified as functional. Here, we show that Ms0251-0252 is a novel TA system in that expression of the toxin Ms0251 leads to growth inhibition that can be rescued by the antitoxin Ms0252. To investigate the functional roles of TA systems in M. smegmatis, we deleted the eight putative TA loci and assayed the mutants for resistance to various stresses. Deletion of all eight TA loci resulted in decreased survival under starvation conditions and altered fitness when exposed to environmental stresses. Furthermore, we showed that deletion of the eight TA loci decreased resistance to phage infection in Sauton medium compared with the results using 7H10 medium, suggesting that TA systems might have different contributions depending on the nutrient environment. Furthermore, we found that MazEF specifically played a dominant role in resistance to phage infection. Finally, transcriptome analysis revealed that MazEF overexpression led to differential expression of multiple genes, including those related to iron acquisition. Altogether, we demonstrate that TA systems coordinately function to allow M. smegmatis to adapt to changing environmental conditions. IMPORTANCE Toxin-antitoxin (TA) systems are mechanisms for rapid adaptation of bacteria to environmental changes. Mycobacterium smegmatis, a model bacterium for studying Mycobacterium tuberculosis, encodes eight putative TA systems. Here, we constructed an M. smegmatis mutant with deletions of all eight TA-encoding genes and evaluated the resistance of these mutants to environmental stresses. Our results showed that different TA systems have overlapping and, in some cases, opposing functions in adaptation to various stresses. We suggest that complementary TA modules may function together to regulate the bacterial stress response, enabling adaptation to changing environments. Together, this study provides key insights into the roles of TA systems in resistance to various environmental stresses, drug tolerance, and defense against phage infection.


Assuntos
Antitoxinas , Toxinas Bacterianas , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Mycobacterium smegmatis/metabolismo , Sistemas Toxina-Antitoxina/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Mycobacterium tuberculosis/genética , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-28848715

RESUMO

Yersinia pestis biofilm formation, controlled by intracellular levels of the second messenger molecule cyclic diguanylate (c-di-GMP), is important for blockage-dependent plague transmission from fleas to mammals. HmsCDE is a tripartite signaling system that modulates intracellular c-di-GMP levels to regulate biofilm formation in Y. pestis. Previously, we found that Y. pestis biofilm formation is stimulated in reducing environments in an hmsCDE-dependent manner. However, the mechanism by which HmsCDE senses the redox state remains elusive. Using a dsbA mutant and the addition of Cu2+ to simulate reducing and oxidizing periplasmic environments, we found that HmsC protein levels are decreased and the HmsC-HmsD protein-protein interaction is weakened in a reducing environment. In addition, we revealed that intraprotein disulphide bonds are critical for HmsC since breakage lowers protein stability and diminishes the interaction with HmsD. Our results suggest that HmsC might play a major role in sensing the environmental changes.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas Periplásmicas/fisiologia , Peste/microbiologia , Yersinia pestis/fisiologia , Proteínas de Bactérias/genética , Sulfato de Cobre/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Oxirredução , Proteínas Periplásmicas/genética , Estabilidade Proteica
3.
Front Microbiol ; 8: 1276, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740488

RESUMO

The untranslated regions (UTRs) of mRNA contain important features that are relevant to the post-transcriptional and translational regulation of gene expression. Most studies of bacterial UTRs have focused on the 5'regions; however, 3'UTRs have recently emerged as a new class of post-transcriptional regulatory elements. 3'UTRs were found to regulate the decay and translation initiation in their own mRNAs. In addition, 3'UTRs constitute a rich reservoir of small regulatory RNAs, regulating target gene expression. In the current review, we describe several recently discovered examples of bacterial regulatory 3'UTRs, discuss their modes of action, and illustrate how they facilitate gene regulation in various environments.

4.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28646112

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in Escherichia coli, Yersinia pestis, and Mycobacterium smegmatis Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.IMPORTANCE The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Escherichia coli/genética , Mycobacterium smegmatis/genética , Recombinação Genética , Yersinia pestis/genética , Proteínas de Bactérias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Engenharia Genética , Mutação , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Yersinia pestis/enzimologia , Yersinia pestis/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29372142

RESUMO

[This corrects the article on p. 355 in vol. 7, PMID: 28848715.].

6.
Front Microbiol ; 7: 821, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375563

RESUMO

Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

7.
Sci Rep ; 5: 8412, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25672461

RESUMO

Yersinia pestis, the agent of plague, forms a biofilm in its flea vector to enhance transmission. Y. pestis biofilm development is positively regulated by hmsT and hmsD, encoding diguanylate cyclases (DGCs) involved in synthesis of the bacterial second messenger c-di-GMP. rcsA, encoding an auxiliary protein in Rcs phosphorelay, is nonfunctional in Y. pestis, while in Yersinia pseudotuberculosis, rcsA is functional and represses biofilms. Previously we showed that Rcs phosphorelay negatively regulates transcription of hmsT in Y. pestis and its ancestor Yersinia pseudotuberculosis. In this study, we show that Rcs positively regulates hmsCDE operon (encoding HmsD) in Y. pestis; while in the presence of functional rcsA, Rcs represses hmsCDE operon in Y. pseudotuberculosis. Loss of rcsA's function in Y. pestis not only causes derepression of hmsT but also causes activation of hmsD, which may account for the increased biofilm formation in Y. pestis. In addition, differential regulation of the two DGCs, HmsT and HmsD by Rcs may help Y. pestis to adapt to different environment.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Yersinia pestis/genética , Yersinia pestis/metabolismo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Biofilmes , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
8.
Environ Microbiol ; 16(4): 1202-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24192006

RESUMO

Yersinia pestis, the cause of plague, forms a biofilm in the foregut of its flea vector to enhance transmission. Biofilm formation in Y. pestis is controlled by the intracellular levels of the second messenger molecule cyclic diguanylate (c-di-GMP). HmsT and Y3730, the two diguanylate cyclases (DGC) in Y. pestis, are responsible for the synthesis of c-di-GMP. Y3730, which we name here as HmsD, has little effect on in vitro biofilms, but has a major effect on biofilm formation in the flea. The mechanism by which HmsD plays differential roles in vivo and in vitro is not understood. In this study, we show that hmsD is part of a three-gene operon (y3729-31), which we designate as hmsCDE. Deletion of hmsC resulted in increased, hmsD-dependent biofilm formation, while deletion or overexpression of hmsE did not affect biofilm formation. Localization experiments suggest that HmsC resides in the periplasmic space. In addition, we provide evidence that HmsC might interact directly with the periplasmic domain of HmsD and cause the proteolysis of HmsD. We propose that HmsC senses the environmental signals, which in turn regulates HmsD, and controls the c-di-GMP synthesis and biofilm formation in Y. pestis.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/fisiologia , Proteínas Periplásmicas/fisiologia , Fósforo-Oxigênio Liases/fisiologia , Yersinia pestis/fisiologia , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...