RESUMO
Interplay between the host and human cytomegalovirus (HCMV) has a pivotal role in the outcome of infection. A region (referred to as UL/b’) present in the Toledo strain of HCMV and low passage clinical isolates contains 19 additional genes, which are absent in the highly passaged laboratory strain AD169. Products of the UL/b’ genes may determine the manifestations of HCMV infection in vivo. However, little is known about the host factors, which interact with UL/b’ proteins. This study was conducted to investigate the function of the HCMV UL136 protein. By yeast two-hybrid screening, the β1 subunit of the host Na+/K+-ATPase (ATP1B1) was identified to be a candidate protein, which interacts with the HCMV UL136 protein. The interaction was further evaluated both in vitro by pull-down assay and in vivo by immunofluorescent co-localization. The results showed that the UL136 protein can interact with ATP1B1 in vitro. Co-localization of UL136-EGFP and ATP1B1-DsRed in cell membranes suggests that ATP1B1 was a partner of the UL136 protein. It can be proposed that the HCMV UL136 protein may have important roles in processes such as cell-to-cell spread, and in maintaining cell osmotic pressure and intracellular ion homeostasis during HCMV infection.
Assuntos
Humanos , Citomegalovirus/química , Mapeamento de Interação de Proteínas , ATPase Trocadora de Sódio-Potássio/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas do Envelope Viral/metabolismo , Análise de Sequência de ProteínaRESUMO
Interplay between the host and human cytomegalovirus (HCMV) has a pivotal role in the outcome of infection. A region (referred to as UL/b') present in the Toledo strain of HCMV and low passage clinical isolates contains 19 additional genes, which are absent in the highly passaged laboratory strain AD169. Products of the UL/b' genes may determine the manifestations of HCMV infection in vivo. However, little is known about the host factors, which interact with UL/b' proteins. This study was conducted to investigate the function of the HCMV UL136 protein. By yeast two-hybrid screening, the ß1 subunit of the host Na+/K+-ATPase (ATP1B1) was identified to be a candidate protein, which interacts with the HCMV UL136 protein. The interaction was further evaluated both in vitro by pull-down assay and in vivo by immunofluorescent co-localization. The results showed that the UL136 protein can interact with ATP1B1 in vitro. Co-localization of UL136-EGFP and ATP1B1-DsRed in cell membranes suggests that ATP1B1 was a partner of the UL136 protein. It can be proposed that the HCMV UL136 protein may have important roles in processes such as cell-to-cell spread, and in maintaining cell osmotic pressure and intracellular ion homeostasis during HCMV infection.