Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
mLife ; 3(1): 129-142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38827505

RESUMO

Kluyveromyces marxianus is a food-safe yeast with great potential for producing heterologous proteins. Improving the yield in K. marxianus remains a challenge and incorporating large-scale functional modules poses a technical obstacle in engineering. To address these issues, linear and circular yeast artificial chromosomes of K. marxianus (KmYACs) were constructed and loaded with disulfide bond formation modules from Pichia pastoris or K. marxianus. These modules contained up to seven genes with a maximum size of 15 kb. KmYACs carried telomeres either from K. marxianus or Tetrahymena. KmYACs were transferred successfully into K. marxianus and stably propagated without affecting the normal growth of the host, regardless of the type of telomeres and configurations of KmYACs. KmYACs increased the overall expression levels of disulfide bond formation genes and significantly enhanced the yield of various heterologous proteins. In high-density fermentation, the use of KmYACs resulted in a glucoamylase yield of 16.8 g/l, the highest reported level to date in K. marxianus. Transcriptomic and metabolomic analysis of cells containing KmYACs suggested increased flavin adenine dinucleotide biosynthesis, enhanced flux entering the tricarboxylic acid cycle, and a preferred demand for lysine and arginine as features of cells overexpressing heterologous proteins. Consistently, supplementing lysine or arginine further improved the yield. Therefore, KmYAC provides a powerful platform for manipulating large modules with enormous potential for industrial applications and fundamental research. Transferring the disulfide bond formation module via YACs proves to be an efficient strategy for improving the yield of heterologous proteins, and this strategy may be applied to optimize other microbial cell factories.

2.
Pestic Biochem Physiol ; 202: 105936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879328

RESUMO

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is one of the most destructive agricultural pests. The entomopathogenic fungus Beauveria bassiana (Hypocreales: Clavicipitaceae) is a biopesticide widely used for biocontrol of various pests. Secreted fungal proteases are critical for insect cuticle destruction and successful infection. We have previously shown that the serine protease BbAorsin in B. bassiana has entomopathogenic and antiphytopathogenic activities. However, the contribution of BbAorsin to fungal growth, conidiation, germination, virulence and antiphytopathogenic activities remains unclear. In this study, the deletion (ΔBbAorsin), complementation (Comp), and overexpression (BbAorsinOE) strains of B. bassiana were generated for comparative studies. The results showed that ΔBbAorsin exhibited slower growth, reduced conidiation, lower germination rate, and longer germination time compared to WT and Comp. In contrast, BbAorsinOE showed higher growth rate, increased conidiation, higher germination rate and shorter germination time. Injection of BbAorsinOE showed the highest virulence against S. frugiperda larvae, while injection of ΔBbAorsin showed the lowest virulence. Feeding BbAorsinOE resulted in lower pupation and adult eclosion rates and malformed adults. 16S rRNA sequencing revealed no changes in the gut microbiota after feeding either WT or BbAorsinOE. However, BbAorsinOE caused a disrupted midgut, leakage of gut microbiota into the hemolymph, and upregulation of apoptosis and immunity-related genes. BbAorsin can disrupt the cell wall of the phytopathogen Fusarium graminearum and alleviate symptoms in wheat seedlings and cherry tomatoes infected with F. graminearum. These results highlight the importance of BbAorsin for B. bassiana and its potential as a multifunctional biopesticide.


Assuntos
Beauveria , Beauveria/patogenicidade , Beauveria/genética , Beauveria/fisiologia , Animais , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Spodoptera/microbiologia , Esporos Fúngicos , Larva/microbiologia , Serina Proteases/metabolismo , Serina Proteases/genética , Controle Biológico de Vetores , Fusarium/patogenicidade , Fusarium/genética
3.
Commun Biol ; 7(1): 627, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789513

RESUMO

In recombinant protein-producing yeast strains, cells experience high production-related stresses similar to high temperatures. It is possible to increase recombinant protein production by enhancing thermotolerance, but few studies have focused on this topic. Here we aim to identify cellular regulators that can simultaneously activate thermotolerance and high yield of recombinant protein. Through screening at 46 °C, a heat-resistant Kluyveromyces marxianus (K. marxianus) strain FDHY23 is isolated. It also exhibits enhanced recombinant protein productivity at both 30 °C and high temperatures. The CYR1N1546K mutation is identified as responsible for FDHY23's improved phenotype, characterized by weakened adenylate cyclase activity and reduced cAMP production. Introducing this mutation into the wild-type strain greatly enhances both thermotolerance and recombinant protein yields. RNA-seq analysis reveals that under high temperature and recombinant protein production conditions, CYR1 mutation-induced reduction in cAMP levels can stimulate cells to improve its energy supply system and optimize material synthesis, meanwhile enhance stress resistance, based on the altered cAMP signaling cascades. Our study provides CYR1 mutation as a novel target to overcome the bottleneck in achieving high production of recombinant proteins under high temperature conditions, and also offers a convenient approach for high-throughput screening of recombinant proteins with high yields.


Assuntos
AMP Cíclico , Kluyveromyces , Proteínas Recombinantes , Transdução de Sinais , AMP Cíclico/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Termotolerância/genética , Mutação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Temperatura Alta
4.
World J Psychiatry ; 14(3): 409-420, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617988

RESUMO

BACKGROUND: Dysphoria and despondency are prevalent psychological issues in patients undergoing Maintenance Hemodialysis (MHD) that significantly affect their quality of life (QOL). High levels of social support can significantly improve the physical and mental well-being of patients undergoing MHD. Currently, there is limited research on how social support mediates the relationship between dysphoria, despondency, and overall QOL in patients undergoing MHD. It is imperative to investigate this mediating effect to mitigate dysphoria and despondency in patients undergoing MHD, ultimately enhancing their overall QOL. AIM: To investigate the mediating role of social support in relationships between dysphoria, despondency, and QOL among patients undergoing MHD. METHODS: Participants comprised 289 patients undergoing MHD, who were selected using a random sampling approach. The Social Support Rating Scale, Self-Rating Anxiety Scale, Self-Rating Depression Scale, and QOL Scale were administered. Correlation analysis was performed to examine the associations between social support, dysphoria, despondency, and QOL in patients undergoing MHD. To assess the mediating impact of social support on dysphoria, despondency, and QOL in patients undergoing MHD, a bootstrap method was applied. RESULTS: Significant correlations among social support, dysphoria, despondency, and quality in patients undergoing MHD were observed (all P < 0.01). Dysphoria and despondency negatively correlated with social support and QOL (P < 0.01). Dysphoria and despondency had negative predictive impacts on the QOL of patients undergoing MHD (P < 0.05). The direct effect of dysphoria on QOL was statistically significant (P < 0.05). Social support mediated the relationship between dysphoria and QOL, and this mediating effect was significant (P < 0.05). Similarly, the direct effect of despondency on QOL was significant (P < 0.05). Moreover, social support played a mediating role between despondency and QOL, with a significant mediating effect (P < 0.05). CONCLUSION: These findings suggest that social support plays a significant mediating role in the relationship between dysphoria, despondency, and QOL in patients undergoing MHD.

5.
Zhongguo Zhen Jiu ; 44(4): 484-488, 2024 Apr 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38621738

RESUMO

Acupuncture manipulation, a crucial component of acupuncture procedures, significantly influences the therapeutic outcomes. Acupuncture manipulation measuring instrument and operating instrument have been developed based on modern technology to objectively characterize manipulation parameters, and achieve standardized and normalized output of acupuncture manipulation. This paper systematically reviews the development and current application status of in vivo acupuncture manipulation measuring instrument, ex vivo acupuncture manipulation measuring instrument, and acupuncture manipulation operating instrument worldwide, and explores key issues that acupuncture manipulation operating instruments need to address for clinical applications, and provides insights into the future prospect of acupuncture robots.


Assuntos
Terapia por Acupuntura , Acupuntura , Terapia por Acupuntura/métodos , Acupuntura/métodos
6.
Ecol Appl ; 34(4): e2969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562107

RESUMO

Drought and nitrogen enrichment could profoundly affect the productivity of semiarid ecosystems. However, how ecosystem productivity will respond to different drought scenarios, especially with a concurrent increase in nitrogen availability, is still poorly understood. Using data from a 4-year field experiment conducted in a semiarid temperate steppe, we explored the responses of aboveground net primary productivity (ANPP) to different drought scenarios and nitrogen addition, and the underlying mechanisms linking soil properties, plant species richness, functional diversity (community-weighted means of plant traits, functional dispersion) and phylogenetic diversity (net relatedness index) to ANPP. Our results showed that completely excluding precipitation in June (1-month intense drought) and reducing half the precipitation amount from June to August (season-long chronic drought) both significantly reduced ANPP, with the latter having a more negative impact on ANPP. However, reducing half of the precipitation frequency from June to August (precipitation redistribution) had no significant effect on ANPP. Nitrogen addition increased ANPP irrespective of drought scenarios. ANPP was primarily determined by soil moisture and nitrogen availability by regulating the community-weighted means of plant height, rather than other aspects of plant diversity. Our findings suggest that precipitation amount is more important than precipitation redistribution in influencing the productivity of temperate steppe, and nitrogen supply could alleviate the adverse impacts of drought on grassland productivity. Our study advances the mechanistic understanding of how the temperate grassland responds to drought stress, and implies that management strategies to protect tall species in the community would be beneficial for maintaining the productivity and carbon sequestration of grassland ecosystems under climate drought.


Assuntos
Secas , Pradaria , Nitrogênio , Nitrogênio/metabolismo , Plantas/classificação , Solo/química , China
7.
Nat Methods ; 21(4): 609-618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443507

RESUMO

Precise identification and quantification of amino acids is crucial for many biological applications. Here we report a copper(II)-functionalized Mycobacterium smegmatis porin A (MspA) nanopore with the N91H substitution, which enables direct identification of all 20 proteinogenic amino acids when combined with a machine-learning algorithm. The validation accuracy reaches 99.1%, with 30.9% signal recovery. The feasibility of ultrasensitive quantification of amino acids was also demonstrated at the nanomolar range. Furthermore, the capability of this system for real-time analyses of two representative post-translational modifications (PTMs), one unnatural amino acid and ten synthetic peptides using exopeptidases, including clinically relevant peptides associated with Alzheimer's disease and cancer neoantigens, was demonstrated. Notably, our strategy successfully distinguishes peptides with only one amino acid difference from the hydrolysate and provides the possibility to infer the peptide sequence.


Assuntos
Nanoporos , Aminoácidos/química , Peptídeos/química , Sequência de Aminoácidos , Porinas/química , Porinas/metabolismo
8.
Mol Med Rep ; 29(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456535

RESUMO

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that the immunofluorescence data shown in Fig. 2G, the mitochondria­ and lysosome­stained images in Fig. 3C, the JC­1 staining images in Fig. 4C and the immunofluorescence data in Fig. 5G were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Molecular Medicine Reports, or were under consideration for publication at around the same time. In view of the fact that certain of the abovementioned data had already apparently been published previously, the Editor of Molecular Medicine Reports has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 17: 3722­3734, 2018; DOI: 10.3892/mmr.2018.8371].

9.
Dev Comp Immunol ; 154: 105142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309673

RESUMO

The fall armyworm, Spodoptera frugiperda, poses a significant threat as a highly destructive agricultural pest in many countries. Understanding the complex interplay between the insect immune system and entomopathogens is critical for optimizing biopesticide efficacy. In this study, we identified a novel microbial binding protein, SfMBP, in S. frugiperda. However, the specific role of SfMBP in the immune response of S. frugiperda remains elusive. Encoded by the LOC118269163 gene, SfMBP shows significant induction in S. frugiperda larvae infected with the entomopathogen Beauveria bassiana. Consisting of 115 amino acids with a signal peptide, an N-terminal flexible region and a C-terminal ß-sheet, SfMBP lacks any known functional domains. It is expressed predominantly during early larval stages and in the larval epidermis. Notably, SfMBP is significantly induced in larvae infected with bacteria and fungi and in SF9 cells stimulated by peptidoglycan. While recombinant SfMBP (rSfMBP) does not inhibit bacterial growth, it demonstrates binding capabilities to bacteria, fungal spores, peptidoglycan, lipopolysaccharides, and polysaccharides. This binding is inhibited by monosaccharides and EDTA. Molecular docking reveals potential Zn2+-interacting residues and three cavities. Furthermore, rSfMBP induces bacterial agglutination in the presence of Zn2+. It also binds to insect hemocytes and SF9 cells, enhancing phagocytosis and agglutination responses. Injection of rSfMBP increased the survival of S. frugiperda larvae infected with B. bassiana, whereas blocking SfMBP with the antibody decreased survival. These results suggest that SfMBP acts as a pattern recognition receptor that enhances pathogen recognition and cellular immune responses. Consequently, this study provides valuable insights for the development of pest control measures.


Assuntos
Proteínas de Transporte , Mariposas , Animais , Spodoptera/fisiologia , Proteínas de Transporte/metabolismo , Simulação de Acoplamento Molecular , Peptidoglicano/metabolismo , Mariposas/metabolismo , Larva/metabolismo , Insetos/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo
10.
J Med Virol ; 96(1): e29396, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235848

RESUMO

The RNA-dependent RNA polymerase (RdRp) is a crucial element in the replication and transcription of RNA viruses. Although the RdRps of lethal human coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) have been extensively studied, the molecular mechanism of the catalytic subunit NSP12, which is involved in pathogenesis, remains unclear. In this study, the biochemical and cell biological results demonstrate the interactions between SARS-CoV-2 NSP12 and seven host proteins, including three splicing factors (SLU7, PPIL3, and AKAP8). The entry efficacy of SARS-CoV-2 considerably decreased when SLU7 or PPIL3 was knocked out, indicating that abnormal splicing of the host genome was responsible for this occurrence. Furthermore, the polymerase activity and stability of SARS-CoV-2 RdRp were affected by the three splicing factors to varying degrees. In addition, NSP12 and its homologues from SARS-CoV and MERS-CoV suppressed the alternative splicing of cellular genes, which were influenced by the three splicing factors. Overall, our research illustrates that SARS-CoV-2 NSP12 can engage with various splicing factors, thereby impacting virus entry, replication, and gene splicing. This not only improves our understanding of how viruses cause diseases but also lays the foundation for the development of antiviral therapies.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , RNA Polimerase Dependente de RNA/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Fatores de Processamento de RNA
11.
Glob Chang Biol ; 30(1): e17071, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273548

RESUMO

Changes in water and nitrogen availability, as important elements of global environmental change, are known to affect the temporal stability of aboveground net primary productivity (ANPP). However, evidences for their effects on the temporal stability of belowground net primary productivity (BNPP), and whether such effects are consistent between belowground and aboveground, are rather scarce. Here, we investigated the responses of temporal stability of both ANPP and BNPP to water and nitrogen addition based on a 9-year manipulative experiment in a temperate grassland in northern China. The results showed that the temporal stability of ANPP increased with water addition but decreased with nitrogen addition. By contrast, the temporal stability of BNPP decreased with water addition but increased with nitrogen enrichment. The temporal stability of ANPP was mainly determined by the soil moisture and inorganic nitrogen, which modulated species asynchrony, as well as by the stability of dominant species. On the other hand, the temporal stability of BNPP was mainly driven by the soil moisture and inorganic nitrogen that modulated ANPP of grasses, and by the direct effect of soil water availability. Our study provides the first evidence on the opposite responses of aboveground and belowground grassland temporal stability to increased water and nitrogen availability, highlighting the importance of considering both aboveground and belowground components of ecosystems for a more comprehensive understanding of their dynamics.


Assuntos
Ecossistema , Pradaria , Nitrogênio , Água , Poaceae , Solo
12.
Adv Clin Exp Med ; 33(3): 233-245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37486697

RESUMO

BACKGROUND: At least 55 million individuals suffer from dementia globally, of which Alzheimer's disease (AD) accounts for 60-70% of cases. Alzheimer's disease is the only major cause of death that is still growing. However, the molecular mechanisms are largely unknown in the progress of AD. OBJECTIVES: The goal of the study was to assess whether lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) could affect processes underlying the regulation of neuronal cell apoptosis in rat and cellular models of AD by directing the expression of miR-125b-5p. MATERIAL AND METHODS: The amyloid-ß (Aß)1-42-induced rat and cellular models of AD were established. Changes in learning and memory in rats were detected with the use of the Morris water maze. Cell viability and apoptosis were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) test and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to detect the expression of lncRNA BDNF-AS and miR-125b-5p, and western blotting was utilized to examine proteins. The correlations between lncRNA BDNF-AS and miR-125b-5p were demonstrated using dual-luciferase reporter gene assays. RESULTS: Our results showed that BDNF-AS was upregulated and miR-125b-5p was downregulated in the rat and cellular AD models. The addition of si-BDNF-AS and miR-125b-5p mimics shortened the escape latency and swimming distance in the rat model. Furthermore, the knockdown of BDNF-AS or the administration of miR-125b-5p mimic significantly suppressed cell apoptosis, cell inflammatory, and inflammatory pathway-related proteins, while these cellular activities were promoted in rat and cellular models of AD. Additionally, miR-125b-5p was found to be a BDNF-AS target gene that was linked negatively with BDNF-AS in AD. CONCLUSIONS: Through regulation of miR-125b-5p, lncRNA BDNF-AS suppressed cell death, inflammation and inflammatory pathway-related proteins in AD models, which provides a potential biomarker and therapeutic target in the clinical treatment of AD.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , Doença de Alzheimer/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Apoptose/genética
13.
Proc Natl Acad Sci U S A ; 120(50): e2220496120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064514

RESUMO

Massive GGGGCC (G4C2) repeat expansion in C9orf72 and the resulting loss of C9orf72 function are the key features of ~50% of inherited amyotrophic lateral sclerosis and frontotemporal dementia cases. However, the biological function of C9orf72 remains unclear. We previously found that C9orf72 can form a stable GTPase activating protein (GAP) complex with SMCR8 (Smith-Magenis chromosome region 8). Herein, we report that the C9orf72-SMCR8 complex is a major negative regulator of primary ciliogenesis, abnormalities in which lead to ciliopathies. Mechanistically, the C9orf72-SMCR8 complex suppresses the primary cilium as a RAB8A GAP. Moreover, based on biochemical analysis, we found that C9orf72 is the RAB8A binding subunit and that SMCR8 is the GAP subunit in the complex. We further found that the C9orf72-SMCR8 complex suppressed the primary cilium in multiple tissues from mice, including but not limited to the brain, kidney, and spleen. Importantly, cells with C9orf72 or SMCR8 knocked out were more sensitive to hedgehog signaling. These results reveal the unexpected impact of C9orf72 on primary ciliogenesis and elucidate the pathogenesis of diseases caused by the loss of C9orf72 function.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Cílios , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cílios/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Células HEK293
14.
J Mol Cell Biol ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993416

RESUMO

As a significant member of the immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) plays a critical role in cancer immune escape and has become an important target for cancer immunotherapy. Clinically approved drugs mainly target the extracellular domain of PD-L1. Recently, the small cytoplasmic domain of PD-L1 has been reported to regulate PD-L1 stability and function through multiple pathways. Therefore, the intracellular domain of PD-L1 and its regulatory pathways could be promising targets for cancer therapy, expanding available strategies for combined immunotherapy. Here, we summarize the emerging roles of the PD-L1 cytoplasmic domain and its regulatory pathways. The conserved motifs, homodimerization, and posttranslational modifications of the PD-L1 cytoplasmic domain have been reported to regulate the membrane anchoring, degradation, nuclear translocation, and glycosylation of PD-L1, etc. This summary provides a comprehensive understanding of the functions of the PD-L1 cytoplasmic domain and evaluates the broad prospects for targeted therapy.

15.
BMC Neurol ; 23(1): 413, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990303

RESUMO

BACKGROUND: Trimethylamine-N-oxide (TMAO), an intestinal microbiota-derived choline metabolite, has been found to be associated with ischemic stroke (IS) in more and more studies. However, the causal role of TMAO on IS occurrence remains perplexing. METHODS: We comprehensively screened the related clinical studies on PubMed, Web of Science, and Embase. Case-control and cohort studies that reported the TMAO levels of both IS patients and healthy controls were included, and the risk of bias was assessed according to the criteria by the Centre for Evidence-Based Medicine in Oxford, UK. A meta-analysis of the retrieved publications was performed with a random-effect model to analyze the connection between TMAO levels and IS events. Besides, a Mendelian randomization (MR) analysis was performed to study the causal effect of TMAO on IS, with pooled data of TMAO and IS obtained from genome-wide association studies (GWAS). The following methods were used: MR-Egger, weighted median, inverse-variance weighted, simple mode, and weighted mode. The study has been registered in INPLASY (Registration number: INPLASY2023100027). RESULTS: Eight cohort or case-control studies covering 2444 cases and 1707 controls were identified. The pooled data indicated that the IS patients tended to have higher TMAO levels compared with the controls (mean difference: 1.97 µM; 95% confidence interval [CI]: 0.87, 3.07; P = 0.0005), while distinctive heterogeneity (I2 = 96%, P < 0.00001) was observed. Sub-group analysis revealed that the heterogeneity of the studies might be derived from the studies themselves. However, no causal effect of TMAO on IS was observed (P > 0.05) in the Mendelian randomization analysis of this study. CONCLUSION: We confirmed that IS patients tend to have higher TMAO levels than healthy individuals, while our findings of MR analysis did not support the causal role of TMAO in IS occurrence. Therefore, more studies are required for a better understanding of the relationship between TMAO levels and IS onset.


Assuntos
AVC Isquêmico , Humanos , AVC Isquêmico/epidemiologia , AVC Isquêmico/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Metilaminas/metabolismo
16.
Front Plant Sci ; 14: 1267758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790781

RESUMO

Introduction: Jujube is an important economic forest tree whose fruit is rich in alkaloids. Chinese jujube (Ziziphus jujuba Mill.) and sour jujube (Ziziphus spinosa Hu.) are the two most important species of the jujube genus. However, the mechanisms underlying the synthesis and metabolism of alkaloids in jujube fruits remain poorly understood. Methods: In this study, the fruits of Ziziphus jujuba 'Hupingzao' and Ziziphus spinosa 'Taigusuanzao' in different harvest stages were used as test materials, we first integrated widely targeted metabolomics and transcriptomics analyses to elucidate the metabolism of alkaloids of jujube fruits. Results: In the metabolomics analysis, 44 alkaloid metabolites were identified in 4 samples, 3 of which were unique to sour jujube fruit. The differential alkaloid metabolites (DAMs) were more accumulated in sour jujube than in Chinese jujube; further, they were more accumulated in the white ripening stage than in the red stage. DAMs were annotated to 12 metabolic pathways. Additionally, transcriptomics data revealed 259 differentially expressed genes (DEGs) involved in alkaloid synthesis and metabolism. By mapping the regulatory networks of DAMs and DEGs, we screened out important metabolites and 11 candidate genes. Discussion: This study preliminarily elucidated the molecular mechanism of jujube alkaloid synthesis. The candidate genes regulated the synthesis of key alkaloid metabolites, but the specific regulation mechanism is unclear. Taken together, our results provide insights into the metabolic networks of alkaloid synthesis in Chinese jujube and sour jujube fruits at different harvest stages, thereby providing a theoretical reference for further research on the regulatory mechanism of jujube alkaloids and their development and utilization.

17.
Front Plant Sci ; 14: 1211182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711301

RESUMO

Background: Changes in rainfall induced by climate change will likely influence the utilization of water resources and affect the nutrient cycle in plants in the water-limited desert steppe. In order to understand the response of nitrogen and phosphorus resorption characteristics of plant leaves to precipitation changes, this study compared the nitrogen (N) resorption efficiency, phosphorus (P) resorption efficiency and influencing factors of plants in a desert steppe through water treatment experiments. Methods: A 4-year field experiment was performed to examine the response and influencing factors of nitrogen (N) and phosphorus resorption efficiency of five dominant plants in Stipa breviflora desert steppe to simulated precipitation change in Inner Mongolia, with four simulated precipitation gradients including reducing water by 50%, natural precipitation, increasing water by 50%, increasing water by 100%. Results: Compared with natural precipitation, increasing water by 100% significantly increased soil moisture, and significantly increased the aboveground biomass of S. breviflora, C. songorica, A. frigida, decreased the N concentrations in green leaves of S. breviflora, Cleistogenes songorica, Artemisia frigida, Kochia prostrata, decreased the N concentrations in senesced leaves of C. songorica, decreased the P concentrations in green leaves of K. prostrata and Convolvulus ammannii, decreased the NRE of S. breviflora. NRE was significantly negatively correlated with N concentration in senesced leaves, and PRE was significantly negatively correlated with P concentration in senesced leaves. Conclusions: Increasing water indirectly reduces NRE by reducing plant leaf green leaves nitrogen concentration, and decreasing water indirectly reduces PRE by reducing soil moisture.

18.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570646

RESUMO

Napabucasin (also known as BBI608) is a natural naphthoquinone originally identified as a cancer cell stemness inhibitor. Accumulated in vitro and in vivo evidence demonstrated that napabucasin showed significant anticancer effects in various types of cancers. Napabucasin inhibits cancer cell proliferation, induces apoptosis and cell cycle arrest, and suppresses metastasis and relapse. Such anticancer activities of napabucasin mainly rely on the inhibition of cancer stemness by targeting signal transducer and activator of transcription 3 (STAT3) and its related gene inhibition. However, several novel molecular targets for napabucasin, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and thioredoxin reductase 1 (TrxR1), have been reported. Napabucasin represents a promising anticancer lead for multiple cancers. In this mini review, the anticancer potential and the molecular mechanism of napabucasin will be briefly highlighted.


Assuntos
Benzofuranos , Naftoquinonas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Naftoquinonas/farmacologia , Benzofuranos/farmacologia , Apoptose , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral
19.
Cell Chem Biol ; 30(11): 1488-1497.e5, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37541256

RESUMO

Profiling membrane proteins' interacting networks is crucial for understanding their regulatory mechanisms and functional characteristics, but it remains a challenging task. Here, by combining genetic incorporation of crosslinkers, tandem denatured purification, and proteomics, we added interaction partners for PD-L1, a cancer cell surface protein that inhibits T cell activity. The site-specifically incorporated crosslinker mediates the covalent capture of interactions under physiological conditions and enabled the PD-L1 complexes to withstand the harsh extraction conditions of membrane proteins. Subsequent experiments led to the identification of potential PD-L1 interaction candidates and verified membrane-associated progesterone receptor component 1 as a novel PD-L1 interaction partner in mammalian cells. Importantly, we demonstrated that PGRMC1 positively regulates PD-L1 expression by regulating GSK3ß-mediated PD-L1 degradation in cancer cells. Furthermore, PGRMC1 knockdown results in dramatically enhanced T cell-mediated cytotoxicity in cancer cells. In conclusion, our study elucidated the interactome of PD-L1 and uncovered a new player in the PD-L1 regulation mechanism.


Assuntos
Antígeno B7-H1 , Linfócitos T , Animais , Linhagem Celular Tumoral , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mamíferos/metabolismo
20.
Front Neurosci ; 17: 1211044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397457

RESUMO

Stroke is one of the important causes of both disability and death worldwide, which is very common in older adults. Post-stroke cognitive impairment (PSCI) is a common secondary damage of stroke, which is the main cause of long-term disability and decreased quality of life in stroke patients, which brings a heavy burden to society and families. Acupuncture, as one of the oldest and widely used worldwide techniques in Chinese medicine, is recommended by the World Health Organization (WHO) as an alternative and complementary strategy for improving stroke care. This review comprehensively summarizes literature from the last 25 years, showing that acupuncture can exert strong beneficial effect on PSCI. The mechanisms of acupuncture on PSCI involves anti-neuronal apoptosis, promoting synaptic plasticity, alleviating central and peripheral inflammatory reactions, and regulating brain energy metabolism disorders (including improving cerebral blood flow, glucose utilization and mitochondrial structure and function, etc.), etc. The effects and mechanisms of acupuncture on PSCI reviewed in this study provides scientific and reliable evidence for acupuncture application for PSCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...