Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 31(7): 927-9, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16599214

RESUMO

We present a moving-scatterer-sensitive optical Doppler tomography (MSS-ODT) technique for in vivo blood flow imaging in real time by using a spectral-domain optical coherence tomography system. In MSS-ODT the influence of stationary scatterers is suppressed by subtracting adjacent complex axial scans before calculating the Doppler frequency shift. We demonstrate that MSS-ODT is a useful technique for accurate determination of blood vessel size by imaging flow in a small capillary tube with a 75 microm inner diameter. The flow profile obtained with MSS-ODT yields a substantially more accurate tube diameter than that obtained with the conventional phase-resolved method, which underestimates the diameter by about 23%. We also demonstrate that MSS-ODT provides improved sensitivity over the conventional phase-resolved method for imaging in vivo blood flow in small vessels in a mouse ear.


Assuntos
Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Orelha/irrigação sanguínea , Orelha/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Fluxometria por Laser-Doppler/métodos , Tomografia Óptica/métodos , Animais , Sistemas Computacionais , Luz , Camundongos , Espalhamento de Radiação , Sensibilidade e Especificidade
2.
Opt Express ; 14(13): 6103-12, 2006 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19516783

RESUMO

The phase-resolved (PR) method is widely used in optical Doppler tomography (ODT) to estimate flow velocity from sequential axial line (A-line) signals. However, the A-line signal contains clutter components induced by stationary or relative slow moving clutter scatterers such as the blood vessel wall or the overall sample with motion artifacts. The clutter component affects the accuracy in quantifying Doppler flow. In this paper, we present a delay line filter (DLF) to reject the clutter effect and enables moving-scatterer-sensitive ODT (MSS-ODT) imaging of flow. The frequency response of DLFs of different orders is theoretically analyzed and we find that a first-order phase-shifted DLF is effective for clutter rejection and for improving the sensitivity to moving scatterers such as moving blood cells. The proposed MSS-ODT method has been experimentally applied to Doppler flow imaging in a capillary flow phantom and a mouse ear in vivo. The ODT data were acquired using a real-time spectral-domain optical coherence tomography (SD-OCT) system with an A-line acquisition rate of 12.3k/s. Doppler flow images obtained with MSS-ODT and the conventional PR-ODT techniques are compared and MSS-ODT is found to be more sensitive to Doppler flow and more accurate in determining vessel size. Small blood vessels that might be masked by clutter signals in PR-OCT are successfully recovered by MSS-ODT.

3.
Appl Opt ; 44(13): 2626-37, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15881072

RESUMO

We propose a new recursive filtering algorithm for wave-front reconstruction in a large-scale adaptive optics system. An embedding step is used in this recursive filtering algorithm to permit fast methods to be used for wave-front reconstruction on an annular aperture. This embedding step can be used alone with a direct residual error updating procedure or used with the preconditioned conjugate-gradient method as a preconditioning step. We derive the Hudgin and Fried filters for spectral-domain filtering, using the eigenvalue decomposition method. Using Monte Carlo simulations, we compare the performance of discrete Fourier transform domain filtering, discrete cosine transform domain filtering, multigrid, and alternative-direction-implicit methods in the embedding step of the recursive filtering algorithm. We also simulate the performance of this recursive filtering in a closed-loop adaptive optics system.

4.
J Biomed Opt ; 9(5): 961-6, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15447017

RESUMO

We report on application of pulsed photothermal radiometry (PPTR) to determine the depth of port wine stain (PWS) blood vessels in human skin. When blood vessels are deep in the PWS skin (>100 microm), conventional PPTR depth profiling can be used to determine PWS depth with sufficient accuracy. When blood vessels are close or partially overlap the epidermal melanin layer, a modified PPTR technique using two-wavelength (585 and 600 nm) excitation is a superior method to determine PWS depth. A direct difference approach in which PWS depth is determined from a weighted difference of temperature profiles reconstructed independently from two-wavelength excitation is demonstrated to be appropriate for a wider range of PWS patients with various blood volume fractions, blood vessel sizes, and depth distribution. The most superficial PWS depths determined in vivo by PPTR are in good agreement with those measured using optical Doppler tomography (ODT).


Assuntos
Vasos Sanguíneos/patologia , Interpretação de Imagem Assistida por Computador/métodos , Mancha Vinho do Porto/patologia , Pele/irrigação sanguínea , Pele/patologia , Espectrofotometria Infravermelho/métodos , Tomografia Óptica/métodos , Algoritmos , Humanos , Aumento da Imagem/métodos , Luz , Radiometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Termografia/métodos
5.
Opt Express ; 12(14): 3279-96, 2004 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-19483853

RESUMO

Large degree-of-freedom real-time adaptive optics (AO) control requires reconstruction algorithms that are computationally efficient and readily parallelized for hardware implementation. In particular, we find the wave-front reconstruction for the Hudgin and Fried geometry can be cast into a form of the well-known Sylvester equation using the Kronecker product properties of matrices. We derive the filters and inverse filtering formulas for wave-front reconstruction in two-dimensional (2-D) Discrete Cosine Transform (DCT) domain for these two geometries using the Hadamard product concept of matrices and the principle of separable variables. We introduce a recursive filtering (RF) method for the wave-front reconstruction on an annular aperture, in which, an imbedding step is used to convert an annular-aperture wave-front reconstruction into a squareaperture wave-front reconstruction, and then solving the Hudgin geometry problem on the square aperture. We apply the Alternating Direction Implicit (ADI) method to this imbedding step of the RF algorithm, to efficiently solve the annular-aperture wave-front reconstruction problem at cost of order of the number of degrees of freedom, O(n). Moreover, the ADI method is better suited for parallel implementation and we describe a practical real-time implementation for AO systems of order 3,000 actuators.

6.
Lasers Surg Med ; 30(2): 141-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11870794

RESUMO

BACKGROUND AND OBJECTIVE: Successful laser treatment of port wine stain (PWS) birthmarks requires knowledge of lesion geometry. Laser parameters, such as pulse duration, wavelength, and radiant exposure, and other treatment parameters, such as cryogen spurt duration, need to be optimized according to epidermal melanin content and lesion depth. We designed, constructed, and clinically tested a photoacoustic probe for PWS depth determination. STUDY DESIGN/MATERIALS AND METHODS: Energy from a frequency-doubled, Nd:YAG laser (lambda=532 nm, tau(p)=4 nanoseconds) was coupled into two 1,500 mum optical fibers fitted into an acrylic handpiece containing a piezoelectric acoustic detector. Laser light induced photoacoustic waves in tissue phantoms and a patient's PWS. The photoacoustic propagation time was used to calculate the depth of the embedded absorbers and PWS lesion. RESULTS: Calculated chromophore depths in tissue phantoms were within 10% of the actual depths of the phantoms. PWS depths were calculated as the sum of the epidermal thickness, determined by optical coherence tomography (OCT), and the epidermal-to-PWS thickness, determined photoacoustically. PWS depths were all in the range of 310-570 microm. The experimentally determined PWS depths were within 20% of those measured by optical Doppler tomography (ODT). CONCLUSIONS: PWS lesion depth can be determined by a photoacoustic method that utilizes acoustic propagation time.


Assuntos
Dermatologia/instrumentação , Terapia a Laser/instrumentação , Mancha Vinho do Porto/diagnóstico , Mancha Vinho do Porto/cirurgia , Desenho de Equipamento , Humanos , Fluxometria por Laser-Doppler/instrumentação , Índice de Gravidade de Doença
7.
Opt Lett ; 27(2): 98-100, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18007724

RESUMO

We have developed a novel real-time phase-resolved functional optical coherence tomography system that uses optical Hilbert transformation. When we use a resonant scanner in the reference arm of the interferometer, with an axial scanning speed of 4 kHz, the frame rate of both structural and Doppler blood-flow imaging with a size of 100 by 100 pixels is 10 Hz. The system has high sensitivity and a larger dynamic range for measuring the Doppler frequency shift that is due to moving red blood cells. Real-time images of in vivo blood flow in human skin obtained with this interferometer are presented.

8.
Opt Lett ; 27(4): 243-5, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18007767

RESUMO

In optical coherence tomography, axial and lateral resolutions are determined by the source coherence length and the numerical aperture of the sampling lens, respectively. Whereas axial resolution can be improved by use of a broadband light source, there is a trade-off between lateral resolution and focusing depth when conventional optical elements are used. We report on the incorporation of an axicon lens into the sample arm of an interferometer to overcome this limitation. Using an axicon lens with a top angle of 160 degrees , we maintained 10-microm or better lateral resolution over a focusing depth of at least 6 mm. In addition to having high lateral resolution, the focusing spot has an intensity that is approximately constant over a greater depth range than when a conventional lens is used.

9.
Opt Lett ; 27(6): 409-11, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18007817

RESUMO

The Doppler bandwidth extracted from the standard deviation of the frequency shift in phase-resolved functional optical coherence tomography (F-OCT) was used to image the velocity component that is transverse to the optical probing beam. It was found that above a certain threshold level the Doppler bandwidth is a linear function of flow velocity and that the effective numerical aperture of the optical objective in the sample arm determines the slope of this dependence. The Doppler bandwidth permits accurate measurement of flow velocity without the need for precise determination of flow direction when the Doppler flow angle is within +/-15 degrees perpendicular to the probing beam. Such an approach extends the dynamic range of flow velocity measurements obtained with the phase-resolved F-OCT.

10.
Opt Lett ; 27(19): 1702-4, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18033341

RESUMO

We describe a phase-resolved functional optical coherence tomography system that can simultaneously yieldin situ images of tissue structure, blood flow velocity, standard deviation, birefringence, and the Stokes vectors in human skin. Multifunctional images were obtained by processing of analytical interference fringe signals derived from two perpendicular polarization-detection channels. The blood flow velocity and standard deviation images were obtained by comparison of the phases from pairs of analytical signals in neighboring A-lines in the same polarization state. The analytical signals from two polarization-diversity detection channels were used to determine the four Stokes vectors for four reference polarization states. From the four Stokes vectors, the birefringence image, which is not sensitive to the orientation of the optical axis in the sample, was obtained. Multifunctional in situ images of a port wine stain birthmark in human skin are presented.

11.
Opt Express ; 10(5): 236-45, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19436351

RESUMO

We have developed a novel real-time phase-resolved optical coherence tomography (OCT) and optical Doppler tomography (ODT) system using optical Hilbert transformation. By combining circularly polarized reference and linearly polarized sample signals, in-phase and quadrature interference components are produced in separate channels and treated as the real and imaginary parts of a complex signal to obtain the phase information directly. Using a resonant scanner at an axial scanning speed of 4 kHz in the reference arm of the interferometer, both structure and blood flow velocity images with 200 axial scans can be acquired at 20 frames per second with high sensitivity and large dynamic range. Real-time videos of in vivo blood flow in the chick chorioallantoic membrane using this interferometer are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...