Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37512369

RESUMO

Aggregate-asphalt adhesion plays an important role in the water stability of asphalt concrete. In various test standards of different countries, it is evaluated via the subjective judgment of testers using the boiling water test. The subjective judgment in the test method is detrimental to the accuracy of the adhesion evaluation. However, there is no quantitative evaluation method for the aggregate-asphalt adhesion in existing studies. Moreover, the effects of aggregate shape on adhesion are also not discussed and stipulated. Hence, an innovative method based on the Chinese boiling water test and image processing technique is put forward to quantificationally evaluate the aggregate-asphalt adhesion. Moreover, the effects of aggregate shapes on adhesion are also investigated via the proposed method from a view of aspect ratio and homogeneity. Results show that the peeling of the asphalt membrane on the aggregate surface is more serious as the complexity of the aggregate shape increases after the boiling water tests, while the effect degree gradually decreases. The effect of aspect ratio on the peeling status of asphalt membrane is lower than that of aggregate homogeneity.

2.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445021

RESUMO

Particle media are widely used in engineering and greatly influence the performance of engineering materials. Asphalt mixtures are multi-phase composite materials, of which coarse aggregates account for more than 60%. These coarse aggregates form a stable structure to transfer and disperse traffic loads. Therefore, knowing how to adjust the structural composition of coarse aggregates to optimize their performance is the key to optimize the performance of asphalt mixtures. In this study, the effects of different roughness and different sizes on the interlocking force and contact force of coarse aggregates were investigated through means of simulation (DEM), and then the formation-evolution mechanism of the coarse aggregate structure and the role of different sizes of aggregates in the coarse aggregate structure were analyzed. Subsequently, the optimal ratio of coarse aggregates was explored through indoor tests, and finally, the gradation of asphalt mixture based on the optimization of fine structure was formed and verified through indoor tests. The results showed that the major model can effectively reveal the role of different types of aggregates in the fine structure and the relationship between the strength of contact forces between them and clarify that the strength of the fine structure increases with the increase in aggregate roughness. Hence, the coarse aggregate structure can be regarded as a contact force transmission system composed of some strong and sub-strong contact forces. Their formation-evolution mechanism can be regarded as a process of the formation of strong and sub-strong contact forces and the transformation from sub-strong contact force to strong contact force. Moreover, the dynamic stability of the optimized graded asphalt mixture was increased by 30%, and the fracture toughness was increased by 26%.

3.
Materials (Basel) ; 14(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34683736

RESUMO

Cement grouting material is one of the most important materials in civil construction at present, for seepage prevention, rapid repair, and reinforcement. To achieve the ever-increasing functional requirements of civil infrastructures, cement grouting materials must have the specific performance of high fluidization, early strength, and low shrinkage. In recent years, nanomaterials have been widely used to improve the engineering performance of cement grouting materials. However, the mechanisms of nanomaterials in grouting materials are not clear. Hence, a high-fluidization, early strength cement grouting material, enhanced by nano-SiO2, is developed via the orthogonal experimental method in this study. The mechanisms of nano-SiO2 on the microstructure and hydration products of the HCGA, in the case of different curing ages and nano-SiO2 contents, are analyzed through scanning electron microscopy tests, X-ray diffraction tests, differential scanning calorimetry tests, and Fourier transform infrared spectroscopy tests.

4.
PLoS One ; 15(9): e0238817, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886701

RESUMO

Bio-asphalt binders have been proposed as replacements for traditional asphalt binders, owing to advantages such as environmental protection, low costs, and abundant resources. However, a limitation of bio-asphalt binders is that their high-temperature performance is not suitable for pavement construction. In recent years, nano-particles have been widely used to improve the pavement performance of asphalt binders, particularly the high-temperature performance. Thus, the nano-particles might also provide a positive modified effect on the high-temperature performance of bio-asphalt binders. Based on this, five types of nano-particles including SiO2, CaCO3, TiO2, Fe2O3, and ZnO are selected for the preparation of modified bio-asphalt binders, using different dosages of nano-particles and bio-oil. The high- and low-temperature performances, aging resistance, workable performance, and water stability of the nano-modified bio-asphalt binders and mixtures are investigated. The results reveal that, the high-temperature performance and aging resistance of the nano-modified bio-asphalt binders and mixtures are improved at increased nano-particle dosages, whereas their low-temperature performance is slightly weakened. The effects of the nano-particles on the workable performance and water stability are insignificant.


Assuntos
Materiais de Construção , Hidrocarbonetos/química , Carbonato de Cálcio , Temperatura Baixa , Compostos Férricos , Temperatura Alta , Nanopartículas Metálicas/química , Nanopartículas/química , Dióxido de Silício
5.
Materials (Basel) ; 12(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443383

RESUMO

The low-temperature crack of asphalt concrete is considered to be one of the main deteriorations in asphalt pavements. However, there have been few studies on the composite effects of the aggregate characteristics and fracturing modes on the low-temperature cracking of asphalt concrete. Hence, the edge cracked semi-circular bend tests and the discrete element modeling approaches are combined to investigate the effect of the aggregate contents, aggregate morphological features and aggregate distributions on the fracture behavior of asphalt concrete in different fracturing modes at different temperatures. The results show that the fracture toughness and the crack extended time reduce with the increasing aggregate orientation and flatness and the decreased aggregate content. The effect of aggregate flatness is nonlinear and its reduction trend grows gradually with the increasing flatness. The total number of failed contacts is reduced with the increasing aggregate orientation and flatness, particularly at 10 °C. The number of failed contacts that occurred in the aggregate-mastic interface in quasi mode II fracturing is slightly higher than that in other fracturing modes. The aggregate distribution in the crack initiation zone greatly influenced the crack resistance, particularly at 10 °C. The research is beneficial to better understanding the fracture mechanisms of asphalt concrete at low-temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...