Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1221512, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547144

RESUMO

Introduction: Efficiently recognizing emotions is a critical pursuit in brain-computer interface (BCI), as it has many applications for intelligent healthcare services. In this work, an innovative approach inspired by the genetic code in bioinformatics, which utilizes brain rhythm code features consisting of δ, θ, α, ß, or γ, is proposed for electroencephalography (EEG)-based emotion recognition. Methods: These features are first extracted from the sequencing technique. After evaluating them using four conventional machine learning classifiers, an optimal channel-specific feature that produces the highest accuracy in each emotional case is identified, so emotion recognition through minimal data is realized. By doing so, the complexity of emotion recognition can be significantly reduced, making it more achievable for practical hardware setups. Results: The best classification accuracies achieved for the DEAP and MAHNOB datasets range from 83-92%, and for the SEED dataset, it is 78%. The experimental results are impressive, considering the minimal data employed. Further investigation of the optimal features shows that their representative channels are primarily on the frontal region, and associated rhythmic characteristics are typical of multiple kinds. Additionally, individual differences are found, as the optimal feature varies with subjects. Discussion: Compared to previous studies, this work provides insights into designing portable devices, as only one electrode is appropriate to generate satisfactory performances. Consequently, it would advance the understanding of brain rhythms, which offers an innovative solution for classifying EEG signals in diverse BCI applications, including emotion recognition.

2.
Cognit Comput ; 14(6): 2260-2273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36043053

RESUMO

Emotion can be influenced during self-isolation, and to avoid severe mood swings, emotional regulation is meaningful. To achieve this, efficiently recognizing emotion is a vital step, which can be realized by electroencephalography signals. Previously, inspired by the knowledge of sequencing in bioinformatics, a method termed brain rhythm sequencing that analyzes electroencephalography as the sequence consisting of the dominant rhythm has been proposed for seizure detection. In this work, with the help of similarity measure methods, the asymmetric features are extracted from the sequences generated by different channel data. After evaluating all asymmetric features for emotion recognition, the optimal feature that yields remarkable accuracy is identified. Therefore, the classification task can be accomplished through a small amount of channel data. From a music emotion recognition experiment and a public DEAP dataset, the classification accuracies of various test sets are approximately 80-85% when employing an optimal feature extracted from one pair of symmetrical channels. Such performances are impressive when using fewer resources is a concern. Further investigation revealed that emotion recognition shows strongly individual characteristics, so an appropriate solution is to include the subject-dependent properties. Compared to the existing works, this method benefits from the design of a portable emotion-aware device used during self-isolation, as fewer scalp sensors are needed. Hence, it would provide a novel way to realize emotional applications in the future.

3.
Math Biosci Eng ; 16(4): 2650-2667, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31137231

RESUMO

The promotion of cloud computing makes the virtual machine (VM) increasingly a target of malware attacks in cybersecurity such as those by kernel rootkits. Memory forensic, which observes the malicious tracks from the memory aspect, is a useful way for malware detection. In this paper, we propose a novel TKRD method to automatically detect kernel rootkits in VMs from private cloud, by combining VM memory forensic analysis with bio-inspired machine learning technology. Malicious features are extracted from the memory dumps of the VM through memory forensic analysis method. Based on these features, various machine learning classifiers are trained including Decision tree, Rule based classifiers, Bayesian and Support vector machines (SVM). The experiment results show that the Random Forest classifier has the best performance which can effectively detect unknown kernel rootkits with an Accuracy of 0.986 and an AUC value (the area under the receiver operating characteristic curve) of 0.998.


Assuntos
Segurança Computacional , Aprendizado de Máquina , Máquina de Vetores de Suporte , Algoritmos , Área Sob a Curva , Teorema de Bayes , Computação em Nuvem , Computadores , Tomada de Decisões , Reações Falso-Positivas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...