Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Vet Microbiol ; 289: 109949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128444

RESUMO

Newcastle disease (ND) is a highly pathogenic, contagious, and fatal infectious disease in poultry caused by the Newcastle disease virus (NDV). The PI3K/AKT signaling pathway is a phosphorylation cascade that participates in regulating several cellular functions. Viruses reportedly regulate the course of infection through the PI3K/AKT axis. Here, we aimed to analyze the pathogenesis of NDV infection mediated by the PI3K/AKT signaling pathway activation. We found that NDV infection can phosphorylate AKT to activate the PI3K/AKT axis both in vitro and in vivo. Flow cytometry and Caspase-3 activity assay showed that NDV infection could inhibit cell apoptosis. The activation or inhibition of the PI3K/AKT signaling pathway activity significantly inhibited or promoted NDV-mediated apoptosis. Furthermore, inhibition of cell apoptosis significantly promoted NDV replication. Overall, our results showed that NDV infection activates the PI3K/AKT signaling pathway and inhibits cell apoptosis, thus promoting viral replication. In this context, the reduced expression of PHLPP2 protein mediated by NDV infection could be inhibited by MG132. PHLPP2 expression reversely and positively regulated NDV replication and cell apoptosis, respectively. These results indicated that NDV infection-mediated activation of the PI3K/AKT signaling pathway and the inhibition of apoptosis depend on the ubiquitin-proteasome degradation of the PHLPP2 protein. Co-IP and indirect immunofluorescence results showed that NDV V protein could interact with PHLPP2 protein, indicating that NDV targeted PHLPP2 protein degradation through V protein to activate the PI3K/AKT signaling pathway. This study deepens our understanding of the molecular mechanisms of NDV infection, providing a theoretical basis for ND prevention and control.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Apoptose , Replicação Viral
2.
Front Vet Sci ; 10: 1181916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841466

RESUMO

Introduction: Newcastle disease virus (NDV) is prevalent worldwide with an extensive host range. Among birds infected with velogenic NDV strains, chickens experience high pathogenicity and mortality, whereas ducks mostly experience mild symptoms or are asymptomatic. Ducks have a unique, innate immune system hypothesized to induce antiviral responses. Circular RNAs (circRNAs) are among the most abundant and conserved eukaryotic transcripts. These participate in innate immunity and host antiviral response progression. Methods: In this study, circRNA expression profile differences post-NDV infection in duck embryo fibroblast (DEF) cells were analyzed using circRNA transcriptome sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal significant enrichment of differentially expressed (DE) circRNAs. The circRNA-miRNA-mRNA interaction networks were used to predict the related functions of circRNAs. Moreover, circ-FBXW7 was selected to determine its effect on NDV infection in DEFs. Results: NDV infection altered circRNA expression profiles in DEF cells, and 57 significantly differentially expressed circRNAs were identified post-NDV infection. DEF responded to NDV by forming circRNAs to regulate apoptosis-, cell growth-, and protein degradation-related pathways via GO and KEGG enrichment analyses. circRNA-miRNA-mRNA interaction networks demonstrated that DEF cells combat NDV infection by regulating cellular pathways or apoptosis through circRNA-targeted mRNAs and miRNAs. circ-FBXW7 overexpression and knockdown inhibited and promoted viral replication, respectively. DEF cells mainly regulated cell cycle alterations or altered cellular sensing to combat NDV infection. Conclusion: These results demonstrate that DEF cells exert antiviral responses by forming circRNAs, providing novel insights into waterfowl antiviral responses.

3.
Vet Microbiol ; 284: 109851, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598526

RESUMO

Newcastle disease virus (NDV) is responsible for outbreaks that pose a threat to the global poultry industry. NDV triggers an interferon (IFN) response in the host upon infection. However, it also employs mechanisms that counteract this response. One important component in IFN-related signaling pathways is 14-3-3ε, which is known to interact with retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). The relationship between 14 and 3-3ε and NDV infection has not been previously explored; therefore, this study aimed to investigate this relationship in vivo and in vitro using overexpressed and knockdown 14-3-3ε experiments, along with co-immunoprecipitation analysis. We found that NDV infection led to the degradation of 14-3-3ε. Furthermore, 14-3-3ε inhibited the replication of NDV, suggesting that NDV may enhance its own replication by promoting the degradation of 14-3-3ε during infection. The study revealed that 14-3-3ε is degraded by lysosomes and the viral protein nucleocapsid protein (NP) of NDV induces this degradation. It was also observed that 14-3-3ε is involved in activating the IFN pathway during NDV infection and mediates the binding of MDA5 to MAVS. Our study reveals that NDV NP mediates the entry of 14-3-3ε into lysosomes and facilitates its degradation. These findings contribute to the existing knowledge on the molecular mechanisms employed by NDV to counteract the IFN response and enhance its own replication.


Assuntos
Interferons , Vírus da Doença de Newcastle , Animais , Interferons/genética , Proteínas do Nucleocapsídeo , Replicação Viral , Surtos de Doenças
4.
Vet Res ; 54(1): 43, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277829

RESUMO

Newcastle disease (ND), caused by the Newcastle disease virus (NDV), is a highly virulent infectious disease of poultry. Virulent NDV can cause severe autophagy and inflammation in host cells. While studies have shown a mutual regulatory relationship between autophagy and inflammation, this relationship in NDV infection remains unclear. This study confirmed that NDV infection could trigger autophagy in DF-1 cells to promote cytopathic and viral replication. NDV-induced autophagy was positively correlated with the mRNA levels of inflammatory cytokines such as IL-1ß, IL-8, IL-18, CCL-5, and TNF-α, suggesting that NDV-induced autophagy promotes the expression of inflammatory cytokines. Further investigation demonstrated that NLRP3 protein expression, Caspase-1 activity, and p38 phosphorylation level positively correlated with autophagy, suggesting that NDV-induced autophagy could promote the expression of inflammatory cytokines through NLRP3/Caspase-1 inflammasomes and p38/MAPK pathway. In addition, NDV infection also triggered mitochondrial damage and mitophagy in DF-1 cells, but did not result in a large leakage of reactive oxygen species (ROS) and mitochondrial DNA (mtDNA), indicating that mitochondrial damage and mitophagy do not contribute to the inflammation response during NDV infection.


Assuntos
Inflamassomos , Inflamação , Vírus da Doença de Newcastle , Animais , Inflamassomos/metabolismo , Vírus da Doença de Newcastle/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1 , Inflamação/veterinária , Autofagia , Citocinas
5.
Viruses ; 15(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37376573

RESUMO

Avian infectious bronchitis is a serious and highly contagious disease that is caused by the infectious bronchitis virus (IBV). From January 2021 to June 2022, 1008 chicken tissue samples were collected from various regions of southern China, and 15 strains of the IBV were isolated. Phylogenetic analysis revealed that the strains mainly comprised the QX type, belonging to the same genotype as the currently prevalent LX4 type, and identified four recombination events in the S1 gene, among which lineages GI-13 and GI-19 were most frequently involved in recombination. Further study of seven selected isolates revealed that they caused respiratory symptoms, including coughing, sneezing, nasal discharge, and tracheal sounds, accompanied by depression. Inoculation of chicken embryos with the seven isolates resulted in symptoms such as curling, weakness, and bleeding. Immunization of specific pathogen-free (SPF) chickens with inactivated isolates produced high antibody levels that neutralized the corresponding strains; however, antibodies produced by vaccine strains were not effective in neutralizing the isolates. No unambiguous association was found between IBV genotypes and serotypes. In summary, a new trend in IBV prevalence has emerged in southern China, and currently available vaccines do not provide protection against the prevalent IBV strains in this region, facilitating the continued spread of IBV.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Recombinação Genética , Filogenia , Galinhas , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , China/epidemiologia
6.
Vet Microbiol ; 281: 109747, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37080085

RESUMO

Newcastle disease virus (NDV) is a paramyxovirus with high incidence and transmissibility in birds and is currently being developed for cancer therapy. N6-methyladenosine (m6A) is a common epigenetic modification of RNA. In this study, we aimed to determine whether this modification plays an important role in NDV infection. We found that methylation-related enzymes were activated in NDV-infected cells, and the abundance of m6A notably increased in vivo and in vitro. Further functional experiments showed that m6A methylation negatively regulates NDV infection. Methylated RNA immunoprecipitation sequencing revealed that the m6A-methylated peaks on different functional components of host genes shifted, underwent reprogramming, and were primarily enriched in the coding sequence after NDV infection. The differentially modified genes were mainly enriched in cellular components, as well as autophagy and ubiquitination-mediated proteolysis signaling pathways. Association analysis of RNA sequencing results showed changes in m6A regulated mRNA transcription and revealed that YTHDC1 is a methylation-related enzyme with important catalytic and recognition roles during NDV infection. Additionally, m6A-methylated peaks were detected in the NDV genome, which may be regulated by methylation-related enzymes in the host, subsequently affecting viral replication. Comprehensive analysis of the m6A expression profile after NDV infection indicated that NDV may cause reprogramming of m6A methylation and that m6A plays important roles during infection. Overall, these findings provide insights into the epigenetic etiology and pathogenesis of NDV.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Galinhas , Metilação , Transcrição Gênica , RNA
7.
Open Med (Wars) ; 18(1): 20230645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874362

RESUMO

Previous studies have indicated that the development of preeclampsia (PE) involves the regulation of circular RNA (circRNA). However, the role of hsa_circ_0014736 (circ_0014736) in PE remains unknown. Thus, the study proposes to reveal the function of circ_0014736 in the pathogenesis of PE and the underlying mechanism. The results showed that circ_0014736 and GPR4 expression were significantly upregulated, while miR-942-5p expression was downregulated in PE placenta tissues when compared with normal placenta tissues. circ_0014736 knockdown promoted the proliferation, migration, and invasion of placenta trophoblast cells (HTR-8/SVneo) and inhibited apoptosis; however, circ_0014736 overexpression had the opposite effects. circ_0014736 functioned as a sponge for miR-942-5p and regulated HTR-8/SVneo cell processes by interacting with miR-942-5p. Additionally, GPR4, a target gene of miR-942-5p, was involved in miR-942-5p-mediated actions in HTR-8/SVneo cells. Moreover, circ_0014736 stimulated GPR4 production through miR-942-5p. Collectively, circ_0014736 inhibited HTR-8/SVneo cell proliferation, migration, and invasion and induced cell apoptosis through the miR-942-5p/GPR4 axis, providing a possible target for the treatment of PE.

8.
Vet Res ; 53(1): 58, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854395

RESUMO

Newcastle disease (ND) is an acute, febrile, and highly contagious disease caused by the Newcastle disease virus (NDV), an important pathogen harmful to domestic poultry. Virulent NDV strain infection induces IL-1ß expression and along with strong inflammatory response, ultimately results in death. Inhibition or overexpression of S1PR1, an important target for inflammatory disease treatment, regulates IL-1ß expression, suggesting that S1PR1 may alter the degree of the inflammatory response induced by NDV infection by regulating pro-inflammatory cytokine expression. However, the molecular mechanism by which S1PR1 regulates IL-1ß expression remains unclear. Here, we explore the expression and tissue distribution of S1PR1 after NDV infection and found that S1PR1 expression increased in the lungs, bursa of Fabricius, and DF-1. IL-1ß expression induced by NDV was increased following treatment of cells with the S1PR1-specific agonist, SEW2871. In contrast, IL-1ß expression induced by NDV was decreased after cells were treated with the S1PR1 inhibitor W146, suggesting that S1PR1 promotes NDV-induced IL-1ß expression. Further investigation demonstrated that NDV induced IL-1ß expression through p38, JNK/MAPK, and NLRP3/caspase-1 signaling molecules and S1PR1 affected the expression of IL-1ß by activating the NLRP3/caspase-1 inflammasome but had no significant effect on p38 and JNK/MAPK. Our study shows that NDV infection promotes S1PR1 expression and induces IL-1ß expression through p38, JNK/MAPK, and NLRP3/caspase-1 inflammasomes and that S1PR1 regulates IL-1ß expression mainly through the NLRP3/caspase-1 inflammasome.


Assuntos
Inflamassomos , Doença de Newcastle , Animais , Caspase 1 , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Vírus da Doença de Newcastle/fisiologia
9.
Vet Res ; 51(1): 53, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32293543

RESUMO

Newcastle disease virus (NDV) infection causes severe inflammation and is a highly contagious disease in poultry. Virulent NDV strains (GM) induce large quantities of interleukin-1ß (IL-1ß), which is the central mediator of the inflammatory reaction. Excessive expression of IL-1ß exacerbates inflammatory damage. Therefore, exploring the mechanisms underlying NDV-induced IL-1ß expression can aid in further understanding the pathogenesis of Newcastle disease. Here, we showed that anti-IL-1ß neutralizing antibody treatment decreased body temperature and mortality following infection with virulent NDV. We further explored the primary molecules involved in NDV-induced IL-1ß expression from the perspective of both the host and virus. This study showed that overexpression of NLRP3 resulted in increased IL-1ß expression, whereas inhibition of NLRP3 or caspase-1 caused a significant reduction in IL-1ß expression, indicating that the NLRP3/caspase-1 axis is involved in NDV-induced IL-1ß expression. Moreover, ultraviolet-inactivated GM (chicken/Guangdong/GM/2014) NDV failed to induce the expression of IL-1ß. We then collected virus from GM-infected cell culture supernatant using ultracentrifugation, extracted the viral RNA, and stimulated the cells further with GM RNA. The results revealed that RNA alone was capable of inducing IL-1ß expression. Moreover, NLRP3/caspase-1 was involved in GM RNA-induced IL-1ß expression. Thus, our study elucidated the critical role of IL-1ß in the pathogenesis of Newcastle disease while also demonstrating that inhibition of IL-1ß via anti-IL-1ß neutralizing antibodies decreased the damage associated with NDV infection; furthermore, GM RNA induced IL-1ß expression via NLRP3/caspase-1.


Assuntos
Galinhas , Expressão Gênica , Inflamassomos/imunologia , Interleucina-1beta/genética , Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/fisiologia , Doenças das Aves Domésticas/imunologia , RNA Viral/metabolismo , Animais , Caspase 1/imunologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Vírus da Doença de Newcastle/genética , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...