Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunology ; 150(2): 213-220, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27753084

RESUMO

Myeloid-derived suppressor cells (MDSCs) and microRNAs (miRNAs) contribute to attenuating immune responses during chronic viral infection; however, the precise mechanisms underlying their suppressive activities remain incompletely understood. We have recently shown marked expansion of MDSCs that promote regulatory T (Treg) cell development in patients with chronic hepatitis C virus (HCV) infection. Here we further investigated whether the HCV-induced expansion of MDSCs and Treg cells is regulated by an miRNA-mediated mechanism. The RNA array analysis revealed that six miRNAs were up-regulated and six miRNAs were down-regulated significantly in myeloid cells during HCV infection. Real-time RT-PCR confirmed the down-regulation of miR-124 in MDSCs from HCV patients. Bioinformatic analysis suggested that miR-124 may be involved in the regulation of signal transducer and activator of transcription 3 (STAT-3), which was overexpressed in MDSCs from HCV patients. Notably, silencing of STAT-3 significantly increased the miR-124 expression, whereas reconstituting miR-124 decreased the levels of STAT-3, as well as interleukin-10 and transforming growth factor-ß, which were overexpressed in MDCSs, and reduced the frequencies of Foxp3+ Treg cells that were developed during chronic HCV infection. These results suggest that reciprocal regulation of miR-124 and STAT-3 in MDSCs promotes Treg cell development, thus uncovering a novel mechanism for the expansion of MDSC and Treg cells during HCV infection.


Assuntos
Hepacivirus/imunologia , Hepatite C Crônica/imunologia , MicroRNAs/metabolismo , Células Supressoras Mieloides/fisiologia , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/imunologia , Células Cultivadas , Biologia Computacional , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interleucina-10/metabolismo , Ativação Linfocitária/genética , MicroRNAs/genética , Células Supressoras Mieloides/virologia , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/genética , Linfócitos T Reguladores/virologia , Fator de Crescimento Transformador beta/metabolismo
2.
J Leukoc Biol ; 100(5): 1201-1211, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27354409

RESUMO

T cell dysfunction has a crucial role in establishing and maintaining viral persistence. We have previously shown a decline in miR-181a, which regulates CD4+ T cell responses via DUSP6 overexpression, in individuals with hepatitis C virus (HCV) infection. Here, we describe accelerated T cell senescence in HCV-infected individuals compared with age- and sex-matched healthy subjects. Mechanistic studies revealed that up-regulation of transcription factor ΔNp63 led to the decline of miR-181a expression, resulting in an overexpression of the antiaging protein Sirt1, in CD4+ T cells from HCV-infected individuals. Either reconstituting miR-181a or silencing ΔNp63 or Sirt1 expression in CD4+ T cells led to accelerated T cell senescence, as evidenced by an increased senescence-associated ß-galactosidase (SA-ß-gal) expression, shortened telomere length, and decreased EdU incorporation; this suggests that HCV-induced T cell senescence is counterregulated by the ΔNp63-miR-181a-Sirt1 pathway. An increase of IL-2 production was observed in these senescent CD4+ T cells and was driven by a markedly reduced frequency of Foxp3+ regulatory T (Treg) cells and increased number of Foxp3- effector T (Teff) cells upon manipulating the ΔNp63-miR-181a-Sirt1 pathway. In conclusion, these findings provide novel mechanistic insights into how HCV uses cellular senescent pathways to regulate T cell functions, revealing new targets for rejuvenating impaired T cell responses during chronic viral infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Hepatite C Crônica/imunologia , MicroRNAs/fisiologia , Transdução de Sinais/imunologia , Sirtuína 1/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Adulto , Idoso , Estudos de Casos e Controles , Senescência Celular , Feminino , Genes Reporter , Humanos , Interleucina-2/biossíntese , Interleucina-2/genética , Masculino , MicroRNAs/biossíntese , MicroRNAs/genética , Pessoa de Meia-Idade , Sirtuína 1/biossíntese , Sirtuína 1/genética , Encurtamento do Telômero , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transfecção , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Regulação para Cima
3.
Immunology ; 148(4): 377-86, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27149428

RESUMO

T cells play a pivotal role in controlling viral infection; however, the precise mechanisms responsible for regulating T-cell differentiation and function during infections are incompletely understood. In this study, we demonstrated an expansion of myeloid-derived suppressor cells (MDSCs), in particular the monocytic MDSCs (M-MDSCs; CD14(+) CD33(+) CD11b(+) HLA-DR(-/low) ), in patients with chronic hepatitis C virus (HCV) infection. Notably, HCV-induced M-MDSCs express high levels of phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and interleukin-10 (IL-10) compared with healthy subjects. Blocking STAT3 signalling reduced HCV-mediated M-MDSC expansion and decreased IL-10 expression. Importantly, we observed a significant increase in the numbers of CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells following incubation of healthy peripheral blood mononuclear cells (PBMCs) with MDSCs derived from HCV-infected patients or treated with HCV core protein. In addition, depletion of MDSCs from PBMCs led to a significant reduction of Foxp3(+) Treg cells developed during chronic HCV infection. Moreover, depletion of MDSCs from PBMCs significantly increased interferon-γ production by CD4(+) T effector (Teff) cells derived from HCV patients. These results suggest that HCV-induced MDSCs promote Treg cell development and inhibit Teff cell function, suggesting a novel mechanism for T-cell regulation and a new strategy for immunotherapy against human viral diseases.


Assuntos
Hepacivirus/imunologia , Hepatite C/imunologia , Células Supressoras Mieloides/fisiologia , Fator de Transcrição STAT3/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Proliferação de Células , Células Cultivadas , Doença Crônica , Fatores de Transcrição Forkhead/metabolismo , Antígenos da Hepatite C/imunologia , Humanos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Células Supressoras Mieloides/virologia , Linfócitos T Auxiliares-Indutores/virologia , Linfócitos T Reguladores/virologia , Proteínas do Core Viral/imunologia
4.
AIDS ; 30(10): 1521-1531, 2016 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-26959508

RESUMO

OBJECTIVE: Regulatory T cells (Tregs) contribute to HIV-1 disease progression by impairing antiviral immunity; however, the precise mechanisms responsible for the development of Tregs in the setting of HIV-1 infection are incompletely understood. DESIGN: In this study, we provide evidence that HIV-induced expansion of monocytic myeloid-derived suppressor cells (M-MDSCs) promote the differentiation of Foxp3 Tregs. METHODS: We measured MDSC induction and cytokine expression by flow cytometry and analyzed their functions by coculturing experiments. RESULTS: We observed a dramatic increase in M-MDSC frequencies in the peripheral blood of HIV-1 seropositive (HIV-1) individuals, even in those on antiretroviral therapy with undetectable viremia, when compared with healthy participants. We also observed increases in M-MDSCs after incubating healthy peripheral mononuclear cells (PBMCs) with HIV-1 proteins (gp120 or Tat) or Toll-like receptor 4 ligand lipopolysaccharides in vitro, an effect that could be abrogated in the presence of the phosphorylated signal transducer and activator of transcription 3 inhibitor, STA-21. Functional analyses indicated that M-MDSCs from HIV-1 individuals express higher levels of IL-10, tumor growth factor-ß, IL-4 receptor α, p47, programmed death-ligand 1, and phosphorylated signal transducer and activator of transcription 3 - all of which are known mediators of myelopoiesis and immunosuppression. Importantly, incubation of healthy CD4 T cells with MDSCs derived from HIV-1 individuals significantly increased differentiation of Foxp3 Tregs. In addition, depletion of MDSCs from PBMCs of HIV-1 individuals led to a significant reduction of Foxp3 Tregs and increase of IFNγ production by CD4 T effector cells. CONCLUSIONS: These results suggest that HIV-induced MDSCs promote Treg cell development and inhibit T cell function - a hallmark of many chronic infectious diseases.


Assuntos
Diferenciação Celular , Infecções por HIV/patologia , Células Supressoras Mieloides/fisiologia , Linfócitos T Reguladores/fisiologia , Células Cultivadas , Técnicas de Cocultura , Citocinas/biossíntese , Citometria de Fluxo , Fatores de Transcrição Forkhead/análise , Humanos , Linfócitos T Reguladores/química
5.
Immunology ; 145(4): 485-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25772938

RESUMO

Host immune responses must be tightly regulated by an intricate balance between positive and negative signals while fighting pathogens; persistent pathogens may usurp these regulatory mechanisms to dampen host immunity to facilitate survival in vivo. Here we report that Tim-3, a negative signalling molecule expressed on monocytes and T cells, is up-regulated on natural killer (NK) cells in individuals chronically infected with hepatitis C virus (HCV). Additionally, the transcription factor T-bet was also found to be up-regulated and associated with Tim-3 expression in NK cells during chronic HCV infection. MicroRNA-155 (miR-155), an miRNA that inhibits signalling proteins involved in immune responses, was down-regulated in NK cells by HCV infection. This Tim-3/T-bet over-expression and miR-155 inhibition were recapitulated in vitro by incubating primary NK cells or NK92 cell line with Huh-7 hepatocytes expressing HCV. Reconstitution of miR-155 in NK cells from HCV-infected patients led to a decrease in T-bet/Tim-3 expression and an increase in interferon-γ production. Blocking Tim-3 signalling also enhanced interferon-γ production in NK cells by improving signal transducer and activator of transcription-5 phosphorylation. These data indicate that HCV-induced, miR-155-regulated Tim-3 expression regulates NK cell function, suggesting a novel mechanism for balancing immune clearance and immune injury during chronic viral infection.


Assuntos
Hepatite C Crônica/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Membrana/imunologia , MicroRNAs/imunologia , Transdução de Sinais/imunologia , Regulação para Cima/imunologia , Adulto , Idoso , Linhagem Celular , Feminino , Receptor Celular 2 do Vírus da Hepatite A , Hepatite C Crônica/patologia , Hepatócitos/imunologia , Hepatócitos/patologia , Humanos , Células Matadoras Naturais/patologia , Masculino , Pessoa de Meia-Idade , Proteínas com Domínio T/imunologia
6.
Hepatology ; 61(4): 1163-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25477247

RESUMO

UNLABELLED: T cells play a crucial role in viral clearance or persistence; however, the precise mechanisms that control their responses during viral infection remain incompletely understood. MicroRNA (miR) has been implicated as a key regulator controlling diverse biological processes through posttranscriptional repression. Here, we demonstrate that hepatitis C virus (HCV)-mediated decline of miR-181a expression impairs CD4(+) T-cell responses through overexpression of dual specific phosphatase 6 (DUSP6). Specifically, a significant decline of miR-181a expression along with overexpression of DUSP6 was observed in CD4(+) T cells from chronically HCV-infected individuals compared to healthy subjects, and the levels of miR-181a loss were found to be negatively associated with the levels of DUSP6 overexpression in these cells. Importantly, reconstitution of miR-181a or blockade of DUSP6 expression in CD4(+) T cells led to improved T-cell responses including enhanced CD25 and CD69 expression, increased interleukin-2 expression, and improved proliferation of CD4(+) T cells derived from chronically HCV-infected individuals. CONCLUSION: Since a decline of miR-181a concomitant with DUSP6 overexpression is the signature marker for age-associated T-cell senescence, these findings provide novel mechanistic insights into HCV-mediated premature T-cell aging through miR-181a-regulated DUSP6 signaling and reveal new targets for therapeutic rejuvenation of impaired T-cell responses during chronic viral infection.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Fosfatase 6 de Especificidade Dupla/biossíntese , Hepacivirus/fisiologia , MicroRNAs/fisiologia , Células Cultivadas , Humanos
7.
PLoS One ; 9(1): e87821, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498204

RESUMO

In this study, we engineered Listeria monocytogens (Lm) by deleting the LmΔactA/ΔinlB virulence determinants and inserting HCV-NS5B consensus antigens to develop a therapeutic vaccine against hepatitis C virus (HCV) infection. We tested this recombinant Lm-HCV vaccine in triggering of innate and adaptive immune responses in vitro using immune cells from HCV-infected and uninfected individuals. This live-attenuated Lm-HCV vaccine could naturally infect human dendritic cells (DC), thereby driving DC maturation and antigen presentation, producing Th1 cytokines, and triggering CTL responses in uninfected individuals. However, vaccine responses were diminished when using DC and T cells derived from chronically HCV-infected individuals, who express higher levels of inhibitory molecule Tim-3 on immune cells. Notably, blocking Tim-3 signaling significantly improved the innate and adaptive immune responses in chronically HCV-infected patients, indicating that novel strategies to enhance the potential of antigen presentation and cellular responses are essential for developing an effective therapeutic vaccine against HCV infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Hepacivirus/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Proteínas de Membrana/imunologia , Vacinas contra Hepatite Viral/imunologia , Feminino , Hepacivirus/genética , Receptor Celular 2 do Vírus da Hepatite A , Hepatite C Crônica/genética , Hepatite C Crônica/imunologia , Hepatite C Crônica/prevenção & controle , Humanos , Listeria monocytogenes/genética , Listeriose/genética , Masculino , Transdução de Sinais/imunologia , Células Th1/imunologia , Vacinas contra Hepatite Viral/genética
8.
J Immunol ; 192(2): 649-57, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24337749

RESUMO

Coinfection of hepatitis B virus (HBV) with hepatitis C virus (HCV) is quite common, leading to an increase in morbidity and mortality. As such, HBV vaccination is recommended in HCV-infected individuals. However, HBV vaccine responses in HCV-infected individuals are often blunted compared with uninfected populations. The mechanism for this failure of vaccine response in HCV-infected subjects remains unclear. In this study, we investigated the expression and function of an inhibitory receptor, killer cell lectin-like receptor subfamily G member 1 (KLRG1), in the regulation of CD4(+) T cells and HBV vaccine responses during HCV infection. We demonstrated that KLRG1 was overexpressed on CD4(+) T cells from HCV-infected, HBV vaccine nonresponders compared with HBV vaccine responders. The capacity of CD4(+) T cells to proliferate and secrete IL-2 cytokine was inversely associated with the level of KLRG1 expression. Importantly, blocking KLRG1 signaling resulted in a significant improvement in CD4(+) T cell proliferation and IL-2 production in HCV-infected, HBV vaccine nonresponders in response to TCR stimulation. Moreover, blockade of KLRG1 increased the phosphorylation of Akt (Ser(473)) and decreased the expression of cell cycle inhibitors p16(ink4a) and p27(kip1), which subsequently enhanced the expression of cyclin-dependent kinase 2 and cyclin E. These results suggest that the KLRG1 pathway impairs CD4(+) T cell responses to neoantigen and induces a state of immune senescence in individuals with HCV infection, raising the possibility that blocking this negative-signaling pathway might improve HBV vaccine responses in the setting of chronic viral infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Vacinas contra Hepatite B/imunologia , Hepatite B/imunologia , Hepatite C/imunologia , Lectinas Tipo C/genética , Transativadores/genética , Envelhecimento/genética , Envelhecimento/imunologia , Linfócitos T CD4-Positivos/virologia , Proliferação de Células , Células Cultivadas , Coinfecção/genética , Coinfecção/imunologia , Ciclina E/genética , Ciclina E/imunologia , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/imunologia , Inibidor de Quinase Dependente de Ciclina p27/imunologia , Hepacivirus/imunologia , Hepatite B/genética , Hepatite B/prevenção & controle , Vírus da Hepatite B/imunologia , Hepatite C/genética , Hepatite C/virologia , Humanos , Interleucina-2/genética , Interleucina-2/imunologia , Lectinas Tipo C/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores Imunológicos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transativadores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...