Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Chin J Integr Med ; 29(3): 224-232, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35809177

RESUMO

OBJECTIVE: To explore whether casticin (CAS) suppresses stemness in cancer stem-like cells (CSLCs) obtained from human cervical cancer (CCSLCs) and the underlying mechanism. METHODS: Spheres from HeLa and CaSki cells were used as CCSLCs. DNA methyltransferase 1 (DNMT1) activity and mRNA levels, self-renewal capability (Nanog and Sox2), and cancer stem cell markers (CD133 and CD44), were detected by a colorimetric DNMT activity/inhibition assay kit, quantitative real-time reverse transcription-polymerase chain reaction, sphere and colony formation assays, and immunoblot, respectively. Knockdown and overexpression of DNMT1 by transfection with shRNA and cDNA, respectively, were performed to explore the mechanism for action of CAS (0, 10, 30, and 100 nmol/L). RESULTS: DNMT1 activity was increased in CCSLCs compared with HeLa and CaSki cells (P<0.05). In addition, HeLa-derived CCSLCs transfected with DNMT1 shRNA showed reduced sphere and colony formation abilities, and lower CD133, CD44, Nanog and Sox2 protein expressions (P<0.05). Conversely, overexpression of DNMT1 in HeLa cells exhibited the oppositive effects. Furthermore, CAS significantly reduced DNMT1 activity and transcription levels as well as stemness in HeLa-derived CCSLCs (P<0.05). Interestingly, DNMT1 knockdown enhanced the inhibitory effect of CAS on stemness. As expected, DNMT1 overexpression reversed the inhibitory effect of CAS on stemness in HeLa cells. CONCLUSION: CAS effectively inhibits stemness in CCSLCs through suppression of DNMT1 activation, suggesting that CAS acts as a promising preventive and therapeutic candidate in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Células HeLa , Células-Tronco Neoplásicas/metabolismo , RNA Interferente Pequeno/metabolismo , Neoplasias do Colo do Útero/metabolismo
3.
BMC Cancer ; 19(1): 224, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866863

RESUMO

BACKGROUND: Our previous works have demonstrated that 8-bromo-7-methoxychrysin suppressed stemness of human hepatocellular carcinoma (HCC) cell line SMMC-7721 induced by condition medium from hepatic stellate cell line LX-2 that was activated by liver cancer stem-like cells (LCSCs). However, whether and whereby BrMC inhibits the stemness induced by co-culture of LCSCs and LX-2 cells remains to be investigated. METHODS: The second-generation spheres by sphere culture were identified and used as SMMC-7721-and MHCC97H-derived LCSLCs. SMMC-7721-and MHCC97-derived LCSCs/LX-2 cells transwell co-culture system was treated with BrMC and its lead compound chrysin. The concentrations of IL-6, IL-8, HGF and PDGF in condition medium from co-culture were measured by enzyme-linked immunosorbent assay (ELISA). The stemness of SMMC-7721 cells was evaluated by sphere formation assay and western blot analysis for expression levels of cancer stem cell markers (CD133 and CD44).The expression levels of cancer-associated fibroblast markers (FAP-α and α-SMA) were employed to evaluate pathologic activation of LX-2 cells. Addition of IL-6 and/or HGF or deletion of IL-6 and/or HGF was conducted to investigate the mechanisms for BrMC and chrysin treatment in SMMC-7721-derived LCSLCs co-cultured with LX-2cells. RESULTS: The co-culture of LCSLCs with LX-2 cells increased sphere formation capability as well as expression of CD133 and CD44 in SMMC-7721 cells, meanwhile, upregulated expression of FAP-α in LX-2 cells. ELISA indicated that the concentrations of IL-6 and HGF were significantly elevated in Co-CM than that of condition media from co-cultured SMMC-7721 cells/LX-2 cells. Treatment of BrMC and chrysin with co-cultures of SMMC-7721- and MHCC97H-derived LCSLCs and LX-2 cells effectively inhibited the above responses. Moreover, addition of IL-6 and/or HGF induced stemness of SMMC-7721 cells and activation of LX-2 cells, conversely, deletion of IL-6 and/or HGF suppressed those. Furthermore, the inhibitory effects of BrMC and chrysin on stemness of SMMC-7721 cells and activation of LX-2 cells were attenuated by addition of IL-6 or HGF, and enhanced by deletion of IL-6 or HGF. CONCLUSIONS: Our results suggest IL-6 and HGF may be the key communication molecules for the interaction between LCSLCs and HSCs, and BrMC and chrysin could block these effects and be the novel therapeutic candidates for HCC management.


Assuntos
Carcinoma Hepatocelular/metabolismo , Flavonoides/farmacologia , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Interleucina-8/antagonistas & inibidores , Interleucina-8/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Exp Ther Med ; 8(5): 1494-1500, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25289048

RESUMO

Casticin is one of the main components of the fruits of Vitex rotundifolia L. Studies have shown that casticin inhibits the growth of various cancer cells, including colon cancer. In the present study, the anti-carcinogenic effects of casticin on human colon cancer and the underlying mechanisms were investigated. The results revealed that casticin significantly induced apoptosis of HT-29, HCT-116, SW480 and Caco-2 cells, induced the accumulation of reactive oxygen species (ROS) and increased the protein levels of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK) and B-cell lymphoma 2-interacting mediator of cell death (Bim) in HT-29 cells. Pretreatment with N-acetylcysteine, an antioxidant chemical compound, inhibited the activation of ASK1, JNK and Bim, as well as the apoptosis induced by casticin. Small interfering RNA targeting ASK1 significantly attenuated the induction of JNK and Bim activation and apoptotic cell death by casticin treatment. SP600125, a specific JNK inhibitor, attenuated Bim activation and apoptosis, but did not alter ASK1 phosphorylation levels. In addition, casticin treatment resulted in apoptosis by the same mechanism in HCT-116, SW480 and Caco-2 cells. These results suggest that casticin significantly induced apoptosis by the activation of the ASK1-JNK-Bim signaling cascade and the accumulation of ROS in colon cancer cells.

5.
Oncol Lett ; 8(1): 295-300, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24959264

RESUMO

7-Difluoromethoxyl-5,4'-di-n-octylgenistein (DFOG) is a novel synthetic genistein analogue that possesses anti-cancer activity in a variety of cancers, including ovarian cancer. The objective of the present study was to investigate whether DFOG inhibits the self-renewal capacity of ovarian cancer stem-like cells (OCSLCs) and to identify its potential mechanism of action. It was found that the sphere-forming cells (SFCs) of the SKOV3 cell line exhibited a self-renewal capacity and high tumorigenicity, indicating that they possessed the properties of ovarian cancer stem cells (OCSCs). It was also shown for the first time that DFOG preferentially inhibited proliferation, self-renewal capacity and expression of stem cell markers [cluster of differentiation (CD)133, CD44 and aldehyde dehydrogenase 1 (ALDH1)] in the SFCs derived from the SKOV3 cells. These effects were accompanied by the downregulation of forkhead box M1 (FOXM1) expression. Overexpression of FOXM1 rescued the DFOG-induced downregulation of FOXM1, CD133, CD44 and ALDH1 protein expression. It also inhibited the self-renewal capacity of the SFCs derived from the SKOV3 cells. Thus, DFOG appears to inhibit the characteristics of OCSLCs by downregulating FOXM1 expression.

6.
Oncol Lett ; 7(5): 1711-1717, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24765206

RESUMO

Casticin is an active ingredient derived from Fructus Viticis, a traditional Chinese medicine. This study aimed to investigate the role of forkhead box O3 (FOXO3a) in breast cancer cells and examine the regulatory mechanisms of FOXO3a in response to casticin treatment of the cells by ELISA, flow cytometry, small interfering RNA (siRNA) transfection and western blot analysis. Casticin treatment induced apoptosis and reduced the expression of the transcription factor forkhead box protein M1 (FOXM1). In addition, FOXM1 repression induced by casticin treatment was associated with the activation of FOXO3a via increased dephosphorylation. Notably, silencing FOXO3a expression by siRNA-mediated gene knockdown attenuated casticin-mediated apoptosis. Collectively, these findings suggest that FOXO3a is a critical mediator of the inhibitory effects of casticin on apoptosis in breast cancer cells.

7.
Int J Oncol ; 43(5): 1719-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23970349

RESUMO

Emerging evidence has suggested that cancer stem cells with expression of surface biomarkers including CD133 and CD44 have more aggressive biological behavior, including epithelial-mesenchymal transition (EMT), which are closely related to invasion. The upregulation and nuclear relocation of the EMT regulator Twist1 have been implicated in the tumor invasion and metastasis of human hepatocellular carcinoma (HCC). In this study, we aimed to isolate and characterize a small population of CD133+ cells that existed in the HCC cell line SMMC-7721 by MACS and investigated the possible roles of 8-bromo-7-methoxychrysin (BrMC), a synthetic analogue of chrysin, in inhibiting the properties of CD133+ sphere-forming cells (SFCs) derived from the HCC cell line SMMC-7721, namely liver cancer stem cells (LCSCs). Based on the data, BrMC inhibited the proliferation, self-renewal and invasion of LCSCs in vitro and in vivo, downregulated the expression of the LCSC biomarkers CD133 and CD44 and induced EMT by downregulating the expression of Twist and ß-catenin in LCSCs. BrMC potentiated the inhibition of LCSCs self-renewal after reduction of twist protein levels, which was attenuated when twist was overexpressed. This study not only provides an important experimental and theoretical basis for investigation of BrMC in LCSCs, but also helps in the development of effective therapeutic medicine for HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Flavonoides/farmacologia , Fígado/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Relacionada a Twist/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Fígado/embriologia , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , Proteína 1 Relacionada a Twist/antagonistas & inibidores , Proteína 1 Relacionada a Twist/genética
8.
Oncol Lett ; 5(5): 1605-1610, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23761826

RESUMO

Casticin, a polymethoxyflavone, is reported to have anticancer activities. The aim of the present study was to examine the molecular mechanisms by which casticin induces apoptosis in ovarian cancer cells. The human ovarian cancer cell lines SKOV3 and A2780 were cultured in vitro. Various molecular techniques, including histone/DNA enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), western blot analysis and gene transfection, were used to assess the expression of FOXO3a and forkhead box protein M1 (FoxM1) in casticin-treated ovarian cancer cell lines. Casticin-induced apoptotic cell death was accompanied by the activation of transcription factor FOXO3a, with a concomitant decrease in the expression levels of FoxM1 and its downstream target factors, namely survivin and polo-like kinase 1 (PLK1), and an increase in p27KIP1. A small inhibitory RNA (siRNA) knockout of FoxM1 potentiated casticin-induced apoptosis in ovarian cancer cells. Silencing FOXO3a expression using siRNA increased FoxM1 expression levels and clearly attenuated the induction of apoptosis by casticin treatment. These results show that casticin-induced apoptosis in ovarian cancer may be caused by the activation of FOXO3a, leading to FoxM1 inhibition.

9.
Oncol Lett ; 5(3): 929-934, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23425937

RESUMO

We previously demonstrated that 5,7-dihydroxy-8-nitrochrysin (NOC), a novel synthetic chrysin analog, preferentially inhibits HER-2/neu-overexpressing MDA-MB-453 breast cancer cell growth by inducing apoptosis; however, the precise molecular mechanism was unclear. In this study, we demonstrated that NOC significantly induces apoptosis of MDA-MB-453 cells and that this is primarily mediated through a mitochondrial death cascade. This was presented as a loss of mitochondrial membrane potential, release of cytochrome c and activation of caspase-9. NOC induces a significant increase in levels of the BH3-only protein Bim. Small interfering RNA-mediated knockdown of Bim markedly attenuated NOC-induced apoptosis. An upstream transcriptional regulator of Bim, forkhead box O3a transcription factor (FOXO3a), experienced a decrease in phosphorylation and nuclear translocation. Silencing of FOXO3a resulted in a marked attenuation in the expression of Bim, as well as protection against NOC-mediated apoptosis. Furthermore, NOC-induced activation and nuclear localization of FOXO3a was associated with reduced levels of Akt phosphorylation. These results suggest that NOC induces apoptosis in MDA-MB-453 human breast cancer cells via caspase activation and modulation of the Akt/FOXO3a pathway.

10.
World J Gastroenterol ; 19(43): 7680-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24431896

RESUMO

AIM: To evaluate whether 8-bromo-7-methoxychrysin (BrMC), a synthetic analogue of chrysin, inhibits the properties of cancer stem cells derived from the human liver cancer MHCC97 cell line and to determine the potential mechanisms. METHODS: CD133(+) cells were sorted from the MHCC97 cell line by magnetic activated cell sorting, and amplified in stem cell-conditioned medium to obtain the enriched CD133(+) sphere forming cells (SFCs). The stem cell properties of CD133(+) SFCs were validated by the tumorsphere formation assay in vitro and the xenograft nude mouse model in vivo, and termed liver cancer stem cells (LCSCs). The effects of BrMC on LCSCs in vitro were evaluated by MTT assay, tumorsphere formation assay and transwell chamber assay. The effects of BrMC on LCSCs in vivo were determined using a primary and secondary xenograft model in Balb/c-nu mice. Expressions of the stem cell markers, epithelial-mesenchymal transition (EMT) markers and ß-catenin protein were analyzed by western blotting or immunohistochemical analysis. RESULTS: CD133(+) SFCs exhibited stem-like cell properties of tumorsphere formation and tumorigenesis capacity in contrast to the parental MHCC97 cells. We found that BrMC preferentially inhibited proliferation and self-renewal of LCSCs (P < 0.05). Furthermore, BrMC significantly suppressed EMT and invasion of LCSCs. Moreover, BrMC could efficaciously eliminate LCSCs in vivo. Interestingly, we showed that BrMC decreased the expression of ß-catenin in LCSCs. Silencing of ß-catenin by small interfering RNA could synergize the inhibition of self-renewal of LCSCs induced by BrMC, while Wnt3a treatment antagonized the inhibitory effects of BrMC. CONCLUSION: BrMC can inhibit the functions and characteristics of LCSCs derived from the liver cancer MHCC97 cell line through downregulation of ß-catenin expression.


Assuntos
Flavonoides/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , beta Catenina/metabolismo , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glicoproteínas/metabolismo , Humanos , Separação Imunomagnética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeos/metabolismo , Interferência de RNA , Esferoides Celulares , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
11.
DNA Cell Biol ; 27(5): 257-65, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18358072

RESUMO

We identified potassium channel tetramerization domain-containing 1 (KCTD1) gene in a human brain cDNA library. Here, we report that the KCTD1 gene contains seven exons, encoding 257 amino acid residues with a predicted molecular mass of 29.4 kDa. Sequence alignments showed KCTD1 protein contains an N-terminal broad-complex, tramtrack, and bric-a-brac (BTB) domain. Northern blot analysis revealed that KCTD1 is expressed in the mammary gland, kidney, brain, and ovary compared to other tissues. Further, the subcellular localization results showed that KCTD1 is localized in the nuclei of HeLa and HBL100 cells. Reporter gene assays in HEK293FT and NIH3T3 cells further indicated that KCTD1 acts as a potent transcriptional repressor and inhibits the transcriptional activity via its BTB domain, though KCTD1 transcriptional repression is unaffected by the HDAC inhibitors, trichostatin A, and sodium butyrate. Finally, we found that the BTB domain of KCTD1 mediates homomeric protein-protein interactions by co-immunoprecipitation and GST pull-down assays. These data present the first characterization of human KCTD1 and suggest that KCTD1 is a nuclear protein that functions as a transcriptional repressor and mediates protein-protein interactions through a BTB domain.


Assuntos
Proteínas Nucleares/genética , Proteínas Repressoras/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Northern Blotting , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Clonagem Molecular , Proteínas Correpressoras , Éxons/genética , Imunofluorescência , Humanos , Imunoprecipitação , Masculino , Dados de Sequência Molecular , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos , Proteínas Repressoras/imunologia , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...