Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 805, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280898

RESUMO

Simultaneously generating various motion modes with high strains in piezoelectric devices is highly desired for high-technology fields to achieve multi-functionalities. However, traditional approach for designing multi-degrees-of-freedom systems is to bond together several multilayer piezoelectric stacks, which generally leads to cumbersome and complicated structures. Here, we proposed a transparent piezo metasurface to achieve various types of strains in a wide frequency range. As an example, we designed a ten-unit piezo metasurface, which can produce high strains (ε3 = 0.76%), and generate linear motions along X-, Y- and Z-axis, rotary motions around X-, Y- and Z-axis as well as coupled modes. An adaptive lens based on the proposed piezo metasurface was demonstrated. It can realize a wide range of focal length (35.82 cm ~ ∞) and effective image stabilization with relatively large displacements (5.05 µm along Y-axis) and tilt angles (44.02' around Y-axis). This research may benefit the miniaturization and integration of multi-degrees-of-freedom systems.

2.
Nat Commun ; 13(1): 6567, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323672

RESUMO

Piezoelectric devices based on a variety of vibration modes are widely utilized in high-tech fields to make a conversion between mechanical and electrical energies. The excitation of single or coupled vibration modes of piezoelectric devices is mainly related to the structure and property of piezoelectric materials. However, for the generally used piezoelectric materials, e.g., lead zirconate titanate ceramics, most of piezoelectric coefficients in the piezoelectric matrix are equal to zero, resulting in many piezoelectric vibration modes cannot be excited, which hinders the design of piezoelectric devices. In this work, an orderly stacked structure with piezoelectric strain units is proposed to achieve all nonzero piezoelectric coefficients, and consequently generate artificially coupled multi-vibration modes with ultrahigh strains. As an example, an orderly stacked structure with two piezoelectric strain units stator, corresponding to 31-36 coupled vibration mode, was designed and fabricated. Based on this orderly stacked structure with two piezoelectric strain units stator, we made a miniature ultrasonic motor (5 mmLength × 1.3 mmHeight × 1.06 mmWidth). Due to the ultrahigh strain of the 31-36 coupled vibration mode, the velocity per volume of the motor reached 4.66 s-1 mm-2. Furthermore, its moving resolution is around 3 nm, which is two orders higher than that of other piezoelectric motors. This work sheds a light on optimizing the performance of state-of-the-art electromechanical devices and may inspire new devices based on multi-vibration modes.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35580107

RESUMO

The piezoelectric actuator is a kind of actuation device that acts through the inverse piezoelectric effect. Due to advantages of high precision, low power consumption, compact size, and flexible structure design, they have a wide range of applications in optics, robotics, microelectromechanical systems, and so on. Piezoelectric materials are the core materials for piezoelectric actuators. In this review, recent developments in high-performance piezoelectric materials (HPMs) are introduced, including relaxor ferroelectric crystals, textured ceramics, piezoelectric metamaterials, and so on. The advances of piezoelectric actuators are introduced in this review based on the developments of those piezoelectric materials, where the relationship between the figure of merits of materials and the performance of actuators is also discussed. Finally, we present outlooks and challenges for piezoelectric materials and actuators.


Assuntos
Sistemas Microeletromecânicos , Robótica , Cerâmica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...