Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 18: 1435619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39280794

RESUMO

Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is characterized by progressive motor neuron degeneration, leading to widespread weakness and respiratory failure. While a variety of mechanisms have been proposed as causes of this disease, a full understanding remains elusive. Electrophysiological alterations, including increased motor axon excitability, likely play an important role in disease progression. There remains a critical need for non-animal disease models that can integrate electrophysiological tools to better understand underlying mechanisms, track disease progression, and evaluate potential therapeutic interventions. This review explores the integration of electrophysiological technologies with ALS disease models. It covers cellular and clinical electrophysiological tools and their applications in ALS research. Additionally, we examine conventional animal models and highlight advancements in humanized models and 3D organoid technologies. By bridging the gap between these models, we aim to enhance our understanding of ALS pathogenesis and facilitate the development of new therapeutic strategies.

2.
Sci Adv ; 9(47): eadi4208, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992174

RESUMO

Genetically encoded voltage indicators (GEVIs) allow the direct visualization of cellular membrane potential at the millisecond time scale. Among these, red-emitting GEVIs have been reported to support multichannel recordings and manipulation of cellular activities with reduced autofluorescence background. However, the limited sensitivity and dimness of existing red GEVIs have restricted their applications in neuroscience. Here, we report a pair of red-shifted opsin-based GEVIs, Cepheid1b and Cepheid1s, with improved dynamic range, brightness, and photostability. The improved dynamic range is achieved by a rational design to raise the electrochromic Förster resonance energy transfer efficiency, and the higher brightness and photostability are approached with separately engineered red fluorescent proteins. With Cepheid1 indicators, we recorded complex firings and subthreshold activities of neurons on acute brain slices and observed heterogeneity in the voltage­calcium coupling on pancreatic islets. Overall, Cepheid1 indicators provide a strong tool to investigate excitable cells in various sophisticated biological systems.


Assuntos
Ilhotas Pancreáticas , Neurônios , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Encéfalo , Transferência Ressonante de Energia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA