Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 165(2): 505-507, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845153

RESUMO

We previously reported a possible potyvirus isolated from Mirabilis jalapa that exhibited a high degree of sequence similarity to Basella rugose mosaic virus (BaRMV) in the region encoding the coat protein (CP). Here, we present the complete genome sequence of this isolate, comprising a 9666-nucleotide-long monopartite ssRNA (excluding the poly(A) tail) encoding a 3080-amino-acid polyprotein. The CP region showed a high degree of nucleotide sequence similarity to three BaRMV isolates (75.2-77.3% identity), while other regions showed nucleotide sequence identity values (48.8-73.7%) below the species demarcation threshold proposed by the ICTV. Therefore, we propose that this isolate be considered a new member of the genus Potyvirus, tentatively named "mirabilis crinkle mosaic virus" (MiCMV).


Assuntos
Mirabilis/virologia , Potyvirus/genética , Sequência de Bases/genética , China , Genoma Viral/genética , Filogenia , RNA Viral/genética , Análise de Sequência de DNA/métodos
2.
Plant J ; 100(5): 1066-1082, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433882

RESUMO

We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single-nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40-42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species.


Assuntos
Fabaceae/genética , Variação Genética , Genoma de Planta , Alelos , Centrômero/genética , Resistência à Doença/genética , Genética Populacional , Genótipo , Haplótipos , Dureza , Família Multigênica , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequências Repetitivas de Ácido Nucleico , Banco de Sementes/classificação , Inversão de Sequência , Telômero/genética
3.
Nat Genet ; 51(5): 877-884, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043755

RESUMO

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.


Assuntos
Arachis/genética , Arachis/classificação , Argentina , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Metilação de DNA , DNA de Plantas/genética , Domesticação , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Hibridização Genética , Fenótipo , Poliploidia , Recombinação Genética , Especificidade da Espécie , Tetraploidia
4.
New Phytol ; 223(4): 2090-2103, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30834536

RESUMO

Reconstruction of an ancestral genome for a set of plant species has been a challenging task because of complex histories that may include whole-genome duplications, segmental duplications, independent gene duplications or losses, diploidization and rearrangement events. Here, we describe the reconstruction a hypothetical ancestral genome for the papilionoid legumes (the largest subfamily within the third largest family in flowering plants), and evaluate the results relative to phylogenetic and chromosomal count data for this group of legumes, spanning 294 diverse papilionoid genera. To reconstruct the ancestral genomes for nine legume species with sequenced genomes, we used a maximum likelihood approach combined with a novel method for identifying informative markers for this purpose. Analyzing genomes from four species within the Phaseoleae, two in Dalbergieae, two in the 'inverted repeat loss' clade, and one in the Robinieae, we infer a common ancestral genome with nine chromosomes. The reconstructed genome structural histories are consistent with chromosomal and phylogenetic histories, but we also infer that a common ancestor with nine chromosomes was probably intermediate to an earlier state of 14 chromosomes following a whole-genome duplication that pre-dated the radiation of the papilionoid legumes, evidence for which is found in early-diverging papilionoid lineages.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Fabaceae/genética , Genoma de Planta , Marcadores Genéticos , Anotação de Sequência Molecular , Filogenia , Especificidade da Espécie , Sintenia/genética
5.
Front Genet ; 9: 454, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356760

RESUMO

The factors behind genome size evolution have been of great interest, considering that eukaryotic genomes vary in size by more than three orders of magnitude. Using a model of two wild peanut relatives, Arachis duranensis and Arachis ipaensis, in which one genome experienced large rearrangements, we find that the main determinant in genome size reduction is a set of inversions that occurred in A. duranensis, and subsequent net sequence removal in the inverted regions. We observe a general pattern in which sequence is lost more rapidly at newly distal (telomeric) regions than it is gained at newly proximal (pericentromeric) regions - resulting in net sequence loss in the inverted regions. The major driver of this process is recombination, determined by the chromosomal location. Any type of genomic rearrangement that exposes proximal regions to higher recombination rates can cause genome size reduction by this mechanism. In comparisons between A. duranensis and A. ipaensis, we find that the inversions all occurred in A. duranensis. Sequence loss in those regions was primarily due to removal of transposable elements. Illegitimate recombination is likely the major mechanism responsible for the sequence removal, rather than unequal intrastrand recombination. We also measure the relative rate of genome size reduction in these two Arachis diploids. We also test our model in other plant species and find that it applies in all cases examined, suggesting our model is widely applicable.

6.
Nat Genet ; 48(4): 438-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26901068

RESUMO

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.


Assuntos
Arachis/genética , Genoma de Planta , Cromossomos de Plantas/genética , Metilação de DNA , Elementos de DNA Transponíveis , Evolução Molecular , Ligação Genética , Anotação de Sequência Molecular , Ploidias , Análise de Sequência de DNA , Sintenia
7.
BMC Genomics ; 15: 433, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24898122

RESUMO

BACKGROUND: Understanding genetic control of tassel and ear architecture in maize (Zea mays L. ssp. mays) is important due to their relationship with grain yield. High resolution QTL mapping is critical for understanding the underlying molecular basis of phenotypic variation. Advanced populations, such as recombinant inbred lines, have been broadly adopted for QTL mapping; however, construction of large advanced generation crop populations is time-consuming and costly. The rapidly declining cost of genotyping due to recent advances in next-generation sequencing technologies has generated new possibilities for QTL mapping using large early generation populations. RESULTS: A set of 708 F2 progeny derived from inbreds Chang7-2 and 787 were generated and genotyped by whole genome low-coverage genotyping-by-sequencing method (average 0.04×). A genetic map containing 6,533 bin-markers was constructed based on the parental SNPs and a sliding-window method, spanning a total genetic distance of 1,396 cM. The high quality and accuracy of this map was validated by the identification of two well-studied genes, r1, a qualitative trait locus for color of silk (chromosome 10) and ba1 for tassel branch number (chromosome 3). Three traits of tassel and ear architecture were evaluated in this population, a total of 10 QTL were detected using a permutation-based-significance threshold, seven of which overlapped with reported QTL. Three genes (GRMZM2G316366, GRMZM2G492156 and GRMZM5G805008) encoding MADS-box domain proteins and a BTB/POZ domain protein were located in the small intervals of qTBN5 and qTBN7 (~800 Kb and 1.6 Mb in length, respectively) and may be involved in patterning of tassel architecture. The small physical intervals of most QTL indicate high-resolution mapping is obtainable with this method. CONCLUSIONS: We constructed an ultra-high-dentisy linkage map for the large early generation population in maize. Our study provides an efficient approach for fast detection of quantitative loci responsible for complex trait variation with high accuracy, thus helping to dissect the underlying molecular basis of phenotypic variation and accelerate improvement of crop breeding in a cost-effective fashion.


Assuntos
Mapeamento Cromossômico/métodos , Inflorescência/genética , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento , Mapeamento Cromossômico/economia , Cromossomos de Plantas , DNA de Plantas/genética , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Análise de Sequência de DNA , Zea mays/genética
8.
Nat Genet ; 44(7): 812-5, 2012 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-22660547

RESUMO

The success of modern maize breeding has been demonstrated by remarkable increases in productivity over the last four decades. However, the underlying genetic changes correlated with these gains remain largely unknown. We report here the sequencing of 278 temperate maize inbred lines from different stages of breeding history, including deep resequencing of 4 lines with known pedigree information. The results show that modern breeding has introduced highly dynamic genetic changes into the maize genome. Artificial selection has affected thousands of targets, including genes and non-genic regions, leading to a reduction in nucleotide diversity and an increase in the proportion of rare alleles. Genetic changes during breeding happen rapidly, with extensive variation (SNPs, indels and copy-number variants (CNVs)) occurring, even within identity-by-descent regions. Our genome-wide assessment of genetic changes during modern maize breeding provides new strategies as well as practical targets for future crop breeding and biotechnology.


Assuntos
Variações do Número de Cópias de DNA , Genoma de Planta , Zea mays/genética , Alelos , Cruzamento/métodos , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...