Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982176

RESUMO

Phosphorus (P) is an essential macronutrient for plant growth. The roots are the main organ for nutrient and water absorption in plants, and they adapt to low-P soils by altering their architecture for enhancing absorption of inorganic phosphate (Pi). This review summarizes the physiological and molecular mechanisms underlying the developmental responses of roots to Pi starvation, including the primary root, lateral root, root hair, and root growth angle, in the dicot model plant Arabidopsis thaliana and the monocot model plant rice (Oryza sativa). The importance of different root traits and genes for breeding P-efficient roots in rice varieties for Pi-deficient soils are also discussed, which we hope will benefit the genetic improvement of Pi uptake, Pi-use efficiency, and crop yields.


Assuntos
Arabidopsis , Oryza , Fosfatos/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Fósforo/metabolismo , Arabidopsis/metabolismo , Fenótipo , Solo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo
2.
Plant Signal Behav ; 17(1): 2065432, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35442849

RESUMO

The OsPIN1 paralogous genes (OsPIN1a-1d) are important for root and panicle development in rice (Oryza sativa L.). However, the specific role of OsPIN1 paralogous genes is still not clear. To understand the specific roles of PIN1 paralogs in rice, we generated pin1 triple and quadruple mutants by crossing the pin1a pin1b and pin1c pin1d double mutants which we previously created. Compared with the 7-day-old wild type, the pin1a pin1c pin1d and pin1b pin1c pin1d triple mutants showed no obvious phenotype variation except that the pin1a pin1c pin1d triple mutant had shorter primary root and shoot. The pin1a pin1b pin1c and pin1a pin1b pin1d triple mutants exhibited a series of developmental abnormalities, including shorter primary roots, longer root hairs, fewer crown roots and lateral roots, shorter and curved shoots. Furthermore, the pin1a pin1b pin1c pin1d quadruple mutant displayed more severe phenotypic defects which was lethal. In addition, the expression levels of some hormone signal transduction and crown root development related genes, such as OsIAAs, OsARFs, OsRRs, and OsCRLs, were significantly altered in the stem base of all examined pin1 multiple mutants. Taken together, our results demonstrated that the four OsPIN1 paralogous genes function redundantly in regulating rice growth and development.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas/genética , Crescimento e Desenvolvimento , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
4.
PLoS One ; 14(10): e0224296, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31644601

RESUMO

Dehydration-responsive element-binding (DREB) transcription factors (TFs) are key regulators of stress-inducible gene expression in plants. Anthocyanins, an important class of flavonoids, protect plants from reactive oxygen species produced under abiotic stresses. However, regulation of DREBs on anthocyanin accumulation is largely unknown. Here, an A-5 subgroup DREB gene (AmDREB3) isolated from Ammopiptanthus mongolicus, a desert broadleaf shrub with very high tolerance to harsh environments, was characterized in terms of both abiotic stress tolerance and anthocyanin accumulation. AmDREB3 does not contain the transcriptional repression motif EAR, and the protein was located in the nucleus and has transcriptional activation capacity. The transcription of AmDREB3 was differentially induced in the shoots and roots of A. mongolicus seedlings under drought, salt, heat, cold, ultraviolet B, and abscisic acid treatments. Moreover, the transcript levels in twigs, young leaves, and roots were higher than in other organs of A. mongolicus shrubs. Constitutively expressing AmDREB3 improved the tolerance of transgenic Arabidopsis to drought, high salinity and heat, likely by inducing the expression of certain stress-inducible genes. The transgenic Arabidopsis seedlings also exhibited an obvious purple coloration and significant increases in anthocyanin accumulation and/or oxidative stress tolerance under drought, salt, and heat stresses. These results suggest that the AmDREB3 TF may be an important positive regulator of both stress tolerance and anthocyanin accumulation.


Assuntos
Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fabaceae/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/fisiologia , Expressão Gênica , Espaço Intracelular/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Transporte Proteico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ativação Transcricional
5.
Plant Physiol Biochem ; 143: 375-387, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31542639

RESUMO

Chloroplast glycerol-3-phosphate acyltransferase (GPAT) is the first key enzyme determining the unsaturation of phosphatidylglycerol (PG) in thylakoid membranes and is involved in the tolerance of plants to chilling, heat and high salinity. However, whether the GPAT affects plant tolerance to other stressors has been scarcely reported. Ammopiptanthus mongolicus is the only evergreen broadleaf shrub growing in the central Asian desert, and it has a high tolerance to harsh environments, especially extreme cold. This study aimed to characterize the physiological function of AmGPAT from A. mongolicus. The transcription of AmGPAT was markedly induced by cold and drought but differentially suppressed by heat and high salinity in the laboratory-cultured seedlings. The gene also had the highest transcription levels in the leaves of shrubs naturally growing in the wild during the late autumn and winter months throughout the year. Moreover, AmGPAT was most abundantly expressed in leaves and immature pods rather than other organs of the shrubs. Constitutive expression of AmGPAT in Arabidopsis increased the levels of cis-unsaturated fatty acids, especially that of linolenic acid (18:3), mainly in PG but also in other chloroplast lipids in transgenic lines. More importantly, the transgene significantly increased the tolerance of the transgenics not only to chilling but also to freezing and oxidative stress at both the cellular and whole-plant levels. In contrast, this gene reduced heat tolerance of the transgenic plants. This study improves the current understanding of chloroplast GPAT in plant tolerance against abiotic stressors through regulating the unsaturation of chloroplast lipids, mainly that of PG.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Congelamento , Proteínas de Plantas/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
6.
Genet Mol Biol ; 42(3): 624-634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31424071

RESUMO

Drought and cold are the primary factors limiting plant growth worldwide. The Ammopiptanthus mongolicus NAC11 (AmNAC11) gene encodes a stress-responsive transcription factor. Expression of the AmNAC11 gene was induced by drought, cold and high salinity. The AmNAC11 protein was localized in the nucleus and plays an important role in tolerance to drought, cold and salt stresses. We also found that differential expression of AmNAC11 was induced in the early stages of seed germination and was related to root growth. When the AmNAC11 gene was introduced into Arabidopsis thaliana by an Agrobacterium-mediated method, the transgenic lines expressing AmNAC11 displayed significantly enhanced tolerance to drought and freezing stresses compared to wild-type Arabidopsis thaliana plants. These results indicated that over-expression of the AmNAC11 gene in Arabidopsis could significantly enhance its tolerance to drought and freezing stresses. Our study provides a promising approach to improve the tolerance of crop cultivars to abiotic stresses through genetic engineering.

7.
Plant Physiol Biochem ; 130: 517-528, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30096686

RESUMO

Dehydration-responsive element-binding (DREB) transcription factors (TFs) play a vital role in plant response to abiotic stresses. However, little is known about DREB TFs in plants adapted to harsh environments and in the formation of polyunsaturated fatty acids (PUFAs), a major membrane component closely associated with plant stress tolerance. Here, we characterized AmDREB2C in Ammopiptanthus mongolicus (Maxim. ex kom.) Cheng F., a desert evergreen broadleaf shrub with a high tolerance to harsh environments. AmDREB2C encodes a canonical DREB2-type TF, and the protein was localized in the nucleus. AmDREB2C had the highest expression levels in leaves of naturally growing shrubs in the wild during the winter season of a year of sampling. The expression was also induced by cold, heat and drought stresses in laboratory-cultured seedlings. Moreover, AmDREB2C was most abundantly expressed in young leaves and immature seeds rather than other tissues of the shrubs. Constitutive expression of AmDREB2C in Arabidopsis enhanced freezing, heat and drought tolerances of the transgenic plants, likely through inducing the expression of important stress-responsive genes. The transgene also increased the level of linolenic acid (C18:3), a major PUFA in most plant species, in leaves and seeds of the transgenic plants. Correspondingly, the transcription of FAD3, FAD7 and FAD8, three genes encoding fatty acid desaturases (FADs) responsible for the production of C18:3, showed a differential up-regulation in these two organs. This study provides new insight into the underlying molecular mechanisms of A. mongolicus' ability to endure harsh environments and DREB TF regulation of fatty acid desaturation.


Assuntos
Arabidopsis/metabolismo , Fabaceae/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Clonagem Molecular , Fabaceae/genética , Fabaceae/fisiologia , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Estresse Fisiológico , Fatores de Transcrição/genética
8.
Plant Physiol ; 174(3): 1969-1989, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28465462

RESUMO

Cellular specialization in abiotic stress responses is an important regulatory feature driving plant acclimation. Our in silico approach of iterative coexpression, interaction, and enrichment analyses predicted root cell-specific regulators of phosphate starvation response networks in Arabidopsis (Arabidopsis thaliana). This included three uncharacterized genes termed Phosphate starvation-induced gene interacting Root Cell Enriched (PRCE1, PRCE2, and PRCE3). Root cell-specific enrichment of 12 candidates was confirmed in promoter-GFP lines. T-DNA insertion lines of 11 genes showed changes in phosphate status and growth responses to phosphate availability compared with the wild type. Some mutants (cbl1, cipk2, prce3, and wdd1) displayed strong biomass gain irrespective of phosphate supply, while others (cipk14, mfs1, prce1, prce2, and s6k2) were able to sustain growth under low phosphate supply better than the wild type. Notably, root or shoot phosphate accumulation did not strictly correlate with organ growth. Mutant response patterns markedly differed from those of master regulators of phosphate homeostasis, PHOSPHATE STARVATION RESPONSE1 (PHR1) and PHOSPHATE2 (PHO2), demonstrating that negative growth responses in the latter can be overcome when cell-specific regulators are targeted. RNA sequencing analysis highlighted the transcriptomic plasticity in these mutants and revealed PHR1-dependent and -independent regulatory circuits with gene coexpression profiles that were highly correlated to the quantified physiological traits. The results demonstrate how in silico prediction of cell-specific, stress-responsive genes uncovers key regulators and how their manipulation can have positive impacts on plant growth under abiotic stress.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Fosfatos/farmacologia , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Plântula/efeitos dos fármacos , Plântula/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
Plant Signal Behav ; 8(8)2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23733064

RESUMO

The origin recognition complex (ORC) is composed of six subunits and plays an important role in DNA replication in all eukaryotes. The ORC subunits OsORC6 as well as the other five ORC subunits in rice were experimentally isolated and sequenced. It indicated that there also exist six ORC subunits in rice. Results of RT-PCR indicated that expression of all the rice ORC genes are no significant difference under 26°C and 34°C. Yeast two hybridization indicated that OsORC2, -3, -5 interact with each other. OsORC5 can then bind OsORC4 to form the OsORC2, -3,-4,-5 core complex. It suggested that the basic interactions have been conserved through evolution. No binding of OsORC1 and OsORC6 with the other subunits were observed. A model of ORC complex in rice is proposed.


Assuntos
Complexo de Reconhecimento de Origem/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Temperatura , Genes de Plantas/genética , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Ligação Proteica , Subunidades Proteicas/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 66(4-5): 1327-32, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16920000

RESUMO

The present study aimed at providing a new method in sight into short-wavelength near-infrared (NIR) spectroscopy of in pharmaceutical quantitative analysis. To do that, 124 experimental samples of metronidazole powder were analyzed using artificial neural networks (ANNs) in the 780-1100 nm region of short-wavelength NIR spectra. In this paper, metronidazole was as active component and other two components (magnesium stearate and starch) were as excipients. Different preprocessing spectral data (first-derivative, second-derivative, standard normal variate (SNV) and multiplicative scatter correction (MSC)) were applied to establish the ANNs models of metronidazole powder. The degree of approximation, a new evaluation criterion of the networks was employed to prove the accuracy of the predicted results. The results presented here demonstrate that the short-wavelength NIR region is promising for the fast and reliable determination of major component in pharmaceutical analysis.


Assuntos
Metronidazol/análise , Redes Neurais de Computação , Pós/análise , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...