Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 49(2): 132-144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813419

RESUMO

Traditional soybean (Glycine max L.) breeding has improved seed yield in high-input agricultural systems, under high nitrogen (N), phosphorus (P) and potassium (K) supply. The seed yield improvements under non-P supply and the seed protein and mineral content dilution by yield improvement were evaluated in 18 soybean cultivars released from 1995 to 2016 in south-east China. Soybean varieties were grown under rainfed conditions in the field under 0 and 35kgPha-1 in four sites: Dafang and Shiqian in the growing season of 2017 and Dafang and Puding in the 2018 season. The seed yield, seed protein content and nine seed nutrition concentration were examined. Soybean seed yield increased with the year of release at rates of 5.5-6.7gm-2 year-1 under 35kgPha-1 and 3.9-4.8gm-2 year-1 under non-P supply in the four experiments. The increase resulted from increases in the number of filled-pods and total seed number rather than from single seed weight and number of seeds per pod. Seed protein content and seed nutrition concentration has not changed with the year of release under 0 and 35kgPha-1 . Grain yield was positively correlated with the seed Fe concentration. The cultivar superiority of seed yield, seed P, Zn and Ca concentration was negatively correlated with their static stability coefficient. Traditional soybean breeding increased yield under both P and non-P supply, without affecting seed protein content and mineral concentrations. A trade-off between high seed yield and seed P, Zn and Ca concentration and their stability under different environments was shown.


Assuntos
Glycine max , Fósforo , Agricultura/métodos , Fósforo/metabolismo , Melhoramento Vegetal , Sementes , Glycine max/metabolismo
2.
Pest Manag Sci ; 77(10): 4709-4718, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34146457

RESUMO

BACKGROUND: Calcium is an essential macronutrient for plant growth. Although it has been shown that exogenous Ca application can increase plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stress. Here, we investigated whether pretreatment of wheat (Triticum aestivum L.) seeds with calcium chloride (CaCl2 ) improves plant resistance against wheat aphid (Schizaphis graminum Rondani). The developmental time, population size, feeding behavior of aphids on plants grown from CaCl2 - and water-pretreated seeds, and plant defense responses to aphid attack were investigated. RESULTS: Seed pretreatment with CaCl2 extended aphid development time and reduced aphid population size and feeding efficiency. In addition, the pretreatment significantly increased the concentration of Ca2+ in wheat leaves, and upregulated expression levels of TaCaM genes and callose synthase genes (TaGSL2, TaGSL8, TaGSL10, TaGSL12, TaGSL19, TaGSL22 and TaGSL23). Callose concentration in the leaves of plants grown from CaCl2 -pretreated seeds increased significantly upon aphid attack. Further, callose deposition was observed mainly in the phloem. CONCLUSION: These results suggest that seed pretreatment with CaCl2 primes the plant response against wheat aphid attack, leading to modulation of callose deposition in the phloem in response to aphid attack. © 2021 Society of Chemical Industry.


Assuntos
Afídeos , Animais , Cloreto de Cálcio/farmacologia , Floema , Folhas de Planta
3.
Pestic Biochem Physiol ; 160: 49-57, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519257

RESUMO

A novel chymotrypsin inhibitor, named ClCI, was purified from coix seed (Coix lacryma-jobi L.) by aqueous two-phase extraction, chymotrypsin-Sepharose 4B affinity chromatography and centrifugal ultrafiltration. ClCI was a 7.9 kDa competitive inhibitor with pI 6.54. The inhibition constants (Ki) for bovine pancreatic chymotrypsin and bacterial subtilisin were 1.27 × 10-10 M and 1.57 × 10-9 M respectively. ClCI had no inhibitory activity against bovine trypsin and porcine elastase. ClCI had wide pH stability and good heat resistance. It can maintain >90% inhibition activity against chymotrypsin at 20-80 °C for 1 h. The primary structure of ClCI was highly similar (57%-92%) to those of several inhibitors belonging to the Gramineae crop potato protease inhibitor- I superfamily and showed the typical sequence motif of the protease inhibitor of the seed storage protein group. ClCI (12.5 mg) inhibited mycelial growth of the phytopathogenic fungi Mycosphaerella melonis, Helminthosporium turcicum, Alternaria solani, Phytophthora capsici, Isariopsis griseola, and Colletotrichum gloeosporioides, and caused 89% inhibition of the proteases from spore germination of plant-pathogenic fungi. The results of the present study indicate that ClCI had biotechnological potential as an alternative agent to combat the important phytopathogenic fungi.


Assuntos
Antifúngicos/farmacologia , Quimotripsina/antagonistas & inibidores , Coix/química , Inibidores da Tripsina/farmacologia , Sequência de Aminoácidos , Antifúngicos/química , Coix/embriologia , Concentração de Íons de Hidrogênio , Sementes/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Inibidores da Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...