Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38958156

RESUMO

Force Field X (FFX) is an open-source software package for atomic resolution modeling of genetic variants and organic crystals that leverages advanced potential energy functions and experimental data. FFX currently consists of nine modular packages with novel algorithms that include global optimization via a many-body expansion, acid-base chemistry using polarizable constant-pH molecular dynamics, estimation of free energy differences, generalized Kirkwood implicit solvent models, and many more. Applications of FFX focus on the use and development of a crystal structure prediction pipeline, biomolecular structure refinement against experimental datasets, and estimation of the thermodynamic effects of genetic variants on both proteins and nucleic acids. The use of Parallel Java and OpenMM combines to offer shared memory, message passing, and graphics processing unit parallelization for high performance simulations. Overall, the FFX platform serves as a computational microscope to study systems ranging from organic crystals to solvated biomolecular systems.


Assuntos
Software , Simulação de Dinâmica Molecular , Variação Genética , Algoritmos , Termodinâmica , Proteínas/química , Cristalização , Ácidos Nucleicos/química
2.
Sci Total Environ ; : 174679, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992370

RESUMO

Heavy metal ions and antibiotics were simultaneously detected in authentic water systems. This research, for the first time, employed synthesized sophorolipid-modified fly ash(SFA) to eliminate tetracycline(TC) and lead(Pb2+) from wastewater. Various characterization techniques, including SEM-EDS, FTIR, XPS, BET, and Zeta, were employed to investigate the properties of the SFA. The results showed that the sophorolipid modification significantly improved the fly ash's adsorption capacities for the target pollutants. The static adsorption experiments elucidated the adsorption behaviors of SFA towards TC and Pb2+ in single and binary systems, highlighting the effects of different Environmental factors on the adsorption behavior in both types of systems. In single systems, SFA exhibited a maximum adsorption capacity of 128.96 mg/g for Pb2+ and 55.57 mg/g for TC. The adsorption of Pb2+ and TC followed pseudo-second-order kinetics and Freundlich isotherm models. The adsorption reactions are endothermic and occur spontaneously. SFA demonstrates varying adsorption mechanisms for two different types of pollutants. In the case of Pb2+, the primary mechanisms include ion exchange, electrostatic interaction, cation-π interaction, and complexation, while TC primarily engages in hydrogen bonding, π-π interaction, and complexion. The interaction between Pb2+ and TC has been shown to improve adsorption efficiency at low concentrations. Additionally, adsorption-desorption experiments confirm the reliable cycling performance of modified fly ash, highlighting its potential as a cost-effective and efficient adsorbent for antibiotics and heavy metals.

3.
J Environ Manage ; 364: 121452, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889651

RESUMO

This study bridges the knowledge gap pertaining to the pathways of heavy metal accumulation and migration within the industrial chain of large-scale cattle farms. Two such farms in Shaanxi serve as a basis for our exploration into Zn, Cu, Cr, Pb, As, and Cd dynamics. Employing material flow analysis complemented by predictive models, we evaluate the potential ecological risks of arable soil from heavy metal influx via manure application. Our findings indicate that Zn and Cu predominate the heavy metal export from these operations, composing up to 60.00%-95.67% of their total content. Predictive models based on 2021 data reveal a potential increase in Cd soil concentration by 0.08 mg/kg by 2035, insinuating a reduced safe usage period for cattle manure at less than 50 years. Conversely, projections from 2022 data point towards a gradual Cu rise in soil, reaching risk threshold levels after 126 years. These outcomes inform limitations in cattle manure utilisation strategies, underscoring Cu and Cd content as key barriers. The study underscores the criticality of continuous heavy metal surveillance within farm by products to ensure environmental protection and sustainable agricultural practices.


Assuntos
Fazendas , Esterco , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Animais , Esterco/análise , Bovinos , Medição de Risco , Poluentes do Solo/análise , Solo/química , Agricultura , Monitoramento Ambiental
4.
Virol Sin ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945214

RESUMO

Hand, foot and mouth disease (HFMD), mainly caused by enterovirus 71 (EV71), have frequently occurred in the Asia-Pacific region, posing a significant threat to the health of infants and young children. Therefore, research on the infection mechanism and pathogenicity of enteroviruses is increasingly becoming important. The 3D polymerase, as the most critical RNA-dependent RNA polymerase (RdRp) for EV71 replication, is widely targeted to inhibit EV71 infection. In this study, we identified a novel host protein, AIMP2, capable of binding to 3D polymerase and inhibiting EV71 infection. Subsequent investigations revealed that AIMP2 recruits the E3 ligase SMURF2, which mediates the polyubiquitination and degradation of 3D polymerase. Furthermore, the antiviral effect of AIMP2 extended to the CVA16 and CVB1 serotypes. Our research uncovered the dynamic regulatory function of AIMP2 during EV71 infection, revealing a novel antiviral mechanism and providing new insights for the development of antienteroviral therapeutic strategies.

5.
Front Immunol ; 15: 1385022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694507

RESUMO

Liver failure represents a critical medical condition with a traditionally grim prognosis, where treatment options have been notably limited. Historically, liver transplantation has stood as the sole definitive cure, yet the stark disparity between the limited availability of liver donations and the high demand for such organs has significantly hampered its feasibility. This discrepancy has necessitated the exploration of hepatocyte transplantation as a temporary, supportive intervention. In light of this, our review delves into the burgeoning field of hepatocyte transplantation, with a focus on the latest advancements in maintaining hepatocyte function, co-microencapsulation techniques, xenogeneic hepatocyte transplantation, and the selection of materials for microencapsulation. Our examination of hepatocyte microencapsulation research highlights that, to date, most studies have been conducted in vitro or using liver failure mouse models, with a notable paucity of experiments on larger mammals. The functionality of microencapsulated hepatocytes is primarily inferred through indirect measures such as urea and albumin production and the rate of ammonia clearance. Furthermore, research on the mechanisms underlying hepatocyte co-microencapsulation remains limited, and the practicality of xenogeneic hepatocyte transplantation requires further validation. The potential of hepatocyte microencapsulation extends beyond the current scope of application, suggesting a promising horizon for liver failure treatment modalities. Innovations in encapsulation materials and techniques aim to enhance cell viability and function, indicating a need for comprehensive studies that bridge the gap between small-scale laboratory success and clinical applicability. Moreover, the integration of bioengineering and regenerative medicine offers novel pathways to refine hepatocyte transplantation, potentially overcoming the challenges of immune rejection and ensuring the long-term functionality of transplanted cells. In conclusion, while hepatocyte microencapsulation and transplantation herald a new era in liver failure therapy, significant strides must be made to translate these experimental approaches into viable clinical solutions. Future research should aim to expand the experimental models to include larger mammals, thereby providing a clearer understanding of the clinical potential of these therapies. Additionally, a deeper exploration into the mechanisms of cell survival and function within microcapsules, alongside the development of innovative encapsulation materials, will be critical in advancing the field and offering new hope to patients with liver failure.


Assuntos
Encapsulamento de Células , Sobrevivência Celular , Hepatócitos , Animais , Humanos , Encapsulamento de Células/métodos , Hepatócitos/transplante , Hepatócitos/citologia , Falência Hepática/terapia , Transplante Heterólogo
6.
J Chem Theory Comput ; 20(10): 4065-4075, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38742922

RESUMO

Conformational dynamics play a crucial role in determining the behavior of the biomolecules. Polarizable force fields, such as AMOEBA, can accurately capture electrostatic interactions underlying the conformational space. However, applying a polarizable force field in molecular dynamics (MD) simulations can be computationally expensive, especially in studying long-time-scale dynamics. To overcome this challenge, we incorporated the AMOEBA potential with Milestoning, an enhanced sampling method in this work. This integration allows us to efficiently sample the rare and important conformational states of a biomolecule by using many short and independent molecular dynamics trajectories with the AMOEBA force field. We applied this method to investigate the conformational dynamics of alanine dipeptide, DNA, and RNA A-B form conversion. Well-converged thermodynamic and kinetic properties were obtained, including the free energy difference, mean first passage time, and critical transitions between states. Our results demonstrate the power of integrating polarizable force fields with enhanced sampling methods in quantifying the thermodynamic and kinetic properties of biomolecules at the atomic level.


Assuntos
DNA , Simulação de Dinâmica Molecular , RNA , Termodinâmica , DNA/química , RNA/química , Dipeptídeos/química , Cinética , Eletricidade Estática
7.
J Phys Chem B ; 128(10): 2381-2388, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38445577

RESUMO

Neural network potentials (NNPs) offer significant promise to bridge the gap between the accuracy of quantum mechanics and the efficiency of molecular mechanics in molecular simulation. Most NNPs rely on the locality assumption that ensures the model's transferability and scalability and thus lack the treatment of long-range interactions, which are essential for molecular systems in the condensed phase. Here we present an integrated hybrid model, AMOEBA+NN, which combines the AMOEBA potential for the short- and long-range noncovalent atomic interactions and an NNP to capture the remaining local covalent contributions. The AMOEBA+NN model was trained on the conformational energy of the ANI-1x data set and tested on several external data sets ranging from small molecules to tetrapeptides. The hybrid model demonstrated substantial improvements over the baseline models in term of accuracy as the molecule size increased, suggesting its potential as a next-generation approach for chemically accurate molecular simulations.

8.
J Chem Theory Comput ; 20(7): 2921-2933, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38507252

RESUMO

Accurately predicting protein behavior across diverse pH environments remains a significant challenge in biomolecular simulations. Existing constant-pH molecular dynamics (CpHMD) algorithms are limited to fixed-charge force fields, hindering their application to biomolecular systems described by permanent atomic multipoles or induced dipoles. This work overcomes these limitations by introducing the first polarizable CpHMD algorithm in the context of the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. Additionally, our implementation in the open-source Force Field X (FFX) software has the unique ability to handle titration state changes for crystalline systems including flexible support for all 230 space groups. The evaluation of constant-pH molecular dynamics (CpHMD) with the AMOEBA force field was performed on 11 crystalline peptide systems that span the titrating amino acids (Asp, Glu, His, Lys, and Cys). Titration states were correctly predicted for 15 out of the 16 amino acids present in the 11 systems, including for the coordination of Zn2+ by cysteines. The lone exception was for a HIS-ALA peptide where CpHMD predicted both neutral histidine tautomers to be equally populated, whereas the experimental model did not consider multiple conformers and diffraction data are unavailable for rerefinement. This work demonstrates the promise polarizable CpHMD simulations for pKa predictions, the study of biochemical mechanisms such as the catalytic triad of proteases, and for improved protein-ligand binding affinity accuracy in the context of pharmaceutical lead optimization.


Assuntos
Amoeba , Proteínas/química , Peptídeos , Simulação de Dinâmica Molecular , Concentração de Íons de Hidrogênio , Aminoácidos
9.
Mater Horiz ; 11(10): 2372-2381, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506727

RESUMO

The oxygen diffusion rate in hafnia (HfO2)-based resistive memory plays a pivotal role in enabling nonvolatile data retention. However, the information retention times obtained in HfO2 resistive memory devices are many times higher than the expected values obtained from oxygen diffusion measurements in HfO2 materials. In this study, we resolve this discrepancy by conducting oxygen isotope tracer diffusion measurements in amorphous hafnia (a-HfO2) thin films. Our results show that the oxygen tracer diffusion in amorphous HfO2 films is orders of magnitude lower than that of previous measurements on monoclinic hafnia (m-HfO2) pellets. Moreover, oxygen tracer diffusion is much lower in denser a-HfO2 films deposited by atomic layer deposition (ALD) than in less dense a-HfO2 films deposited by sputtering. The ALD films yield similar oxygen diffusion times as experimentally measured device retention times, reconciling this discrepancy between oxygen diffusion and retention time measurements. More broadly, our work shows how processing conditions can be used to control oxygen transport characteristics in amorphous materials without long-range crystal order.

10.
Environ Pollut ; 348: 123439, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325505

RESUMO

Cocomposting coal gangue and sludge eliminates the challenge of utilizing coal gangue. However, there is limited understanding about the feasibility of cocomposting sludge and coal gangue, as well as the composting indicators, functional microorganisms, and safety risks involved. Therefore, this study evaluated the feasibility of enhancing carbon composting in coal gangue by incorporating sludge along with sawdust as a conditioner. Three laboratory-scale reactors were designed and labeled as T1 (20 % coal gangue, 60 % sludge, and 20 % sawdust), T2 (40 % coal gangue, 40 % sludge, and 20 % sawdust), and T3 (60 % coal gangue, 20 % sludge, and 20 % sawdust). Seed germination and plant growth assessments were conducted to ensure compost stability and assess phytotoxicity to cabbage (Brassica rapa chinensis L.) in terms of growth and biomass. The results indicated that the temperature, pH, EC and ammonia nitrogen of all three reactor conditions met the requirements for product decomposition. Composting was successfully achieved when the sludge proportion was 20 % (T3). However, when the sludge proportion was markedly high (T1), the harmlessness of the compost was reduced. The germination indices of T1, T2, and T3 reached 95 %, 122 %, and 119 % at maturity, respectively. This confirmed that the harmless cycle, which involved promoting condensation and aromatization, enhancing decay, and reducing composting time, was shorter in T2 and T3 than in T1. Coal gangue can also serve as a beneficial habitat for microorganisms, promoting an increase in their population and activity. Potting experiments in sandy soil revealed that the mechanism of action of compost products in soil included not only the enhancement of soil nutrients but also the improvement of soil texture. The results of this study suggest that using coal gangue as a raw material for composting is an efficient and environmentally friendly approach for producing organic fertilizers.


Assuntos
Carbono , Compostagem , Esgotos/química , Estudos de Viabilidade , Carvão Mineral , Solo/química
11.
J Virol ; 98(2): e0156723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38197631

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Herpesvirus Humano 8 , Infecção Latente , Humanos , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 8/fisiologia , NF-kappa B/metabolismo , Ativação Viral , Latência Viral , Replicação Viral , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo
12.
Artigo em Chinês | MEDLINE | ID: mdl-37828894

RESUMO

Bilateral vestibulopathy(BVP) is one of the common diseases in the vestibular nervous system, with an incidence rate of about 4%-7% in the population, which can lead to a variety of body dysfunctions. At present, there are two main treatment methods for BVP. One is vestibular rehabilitation. However, only part of BVP patients can finally benefit from vestibular rehabilitation, and most patients will remain with permanent vestibular dysfunction. Benefiting from the maturity of cochlear implant technology, European and American countries took the lead in the development of vestibular prosthesis(VP) technology to restore the vestibular function in patients with BVP. This review will focus on the development history, principles, future applications and the related research progress of VP in China.


Assuntos
Vestibulopatia Bilateral , Implante Coclear , Implantes Cocleares , Vestíbulo do Labirinto , Humanos , Vestibulopatia Bilateral/terapia , China
13.
ACS Med Chem Lett ; 14(10): 1396-1403, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849534

RESUMO

Lysyl hydroxylase 2 (LH2) catalyzes the formation of highly stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), thus promoting lung cancer metastasis through its capacity to modulate specific types of collagen cross-links within the tumor stroma. Using 1 and 2 from our previous high-throughput screening (HTS) as lead probes, we prepared a series of 1,3-diketone analogues, 1-18, and identified 12 and 13 that inhibit LH2 with IC50's of approximately 300 and 500 nM, respectively. Compounds 12 and 13 demonstrate selectivity for LH2 over LH1 and LH3. Quantum mechanics/molecular mechanics (QM/MM) modeling indicates that the selectivity of 12 and 13 may stem from noncovalent interactions like hydrogen bonding between the morpholine/piperazine rings with the LH2-specific Arg661. Treatment of 344SQ WT cells with 13 resulted in a dose-dependent reduction in their migration potential, whereas the compound did not impede the migration of the same cell line with an LH2 knockout (LH2KO).

14.
PLoS One ; 18(10): e0286426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792772

RESUMO

Ischemia stroke and epilepsy are two neurological diseases that have significant patient and societal burden, with similar symptoms of neurological deficits. However, the underlying mechanism of their co-morbidity are still unclear. In this study, we performed a combined analysis of six gene expression profiles (GSE58294, GSE22255, GSE143272, GSE88723, GSE163654, and GSE174574) to reveal the common mechanisms of IS and epilepsy. In the mouse datasets, 74 genes were co-upregulated and 7 genes were co-downregulated in the stroke and epilepsy groups. Further analysis revealed that the co-expressed differentially expressed genes (DEGs) were involved in negative regulation of angiogenesis and the MAPK signaling pathway, and this was verified by Gene Set Enrichment Analysis of human datasets and single cell RNA sequence of middle cerebral artery occlusion mice. In addition, combining DEGs of human and mouse, PTGS2, TMCC3, KCNJ2, and GADD45B were identified as cross species conserved hub genes. Meanwhile, molecular docking results revealed that trichostatin A and valproic acid may be potential therapeutic drugs. In conclusion, to our best knowledge, this study conducted the first comorbidity analysis of epilepsy and ischemic stroke to identify the potential common pathogenic mechanisms and drugs. The findings may provide an important reference for the further studies on post-stroke epilepsy.


Assuntos
Epilepsia , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Perfilação da Expressão Gênica/métodos , Simulação de Acoplamento Molecular , Transcriptoma , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Epilepsia/genética
15.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37526158

RESUMO

Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications, but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuum model is an attractive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations. Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant timescales.


Assuntos
Amoeba , Solventes/química , Proteínas/química , Simulação por Computador , Fenômenos Biofísicos , Termodinâmica
16.
Psychol Res Behav Manag ; 16: 3171-3183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37584040

RESUMO

Purpose: This paper investigated the prevalence of mobile phone dependence (MPD) and its associated with learning burnout under the "double reduction" policy among adolescents in Guizhou Province in western China. In addition, the influence of the mediating mechanism of social support on this relationship was investigated. Methods: The sample was collected from 16,216 adolescents in West China's Guizhou province, from December 2021 to January 2022 via multistage stratified random sampling. The Self-rating Questionnaire for Adolescent Problematic Mobile Phone Use (SQAPMPU) was used to assess the MPD, the Adolescent Student Burnout Scale (ASBI) was used to assess the learning burnout, and the Social Support Scale (SSS) was used to assess the social support. A hierarchical linear regression model was used to analyze the relationship between MPD, learning burnout, and social support. The mediating effect of social support between MPD and learning burnout was analyzed by structural equation model. Results: Prevalence of MPD was 26.4% among adolescents in Guizhou province in western China. After adjusting for confounding variables like demographics, multiple linear regression model has revealed that learning burnout positively predicted MPD and social support negatively predicted MPD. The structural equation model showed that 10.9% of the effect was explained by the mediating effect of social support. Conclusion: These findings could inform service delivery and policy formulation to reduce learning and avoid MPD in adolescents.

17.
J Phys Chem A ; 127(30): 6227-6240, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37478410

RESUMO

UV photofragment spectroscopy and IR-UV double resonance methods are used to determine the structure and spectroscopic responses of a three-dimensional [2.2.2]-benzocryptand cage to the incorporation of a single K+ or Ba2+ imbedded inside it (labeled as K+-BzCrypt, Ba2+-BzCrypt). We studied the isolated ion-cryptand complex under cryo-cooled conditions, brought into the gas phase by nano-electrospray ionization. Incorporation of a phenyl ring in place of the central ethyl group in one of the three N-CH2-CH2-O-CH2-CH2-O-CH2-CH2-N chains provides a UV chromophore whose S0-S1 transition we probe. K+-BzCrypt and Ba2+-BzCrypt have their S0-S1 origin transitions at 35,925 and 36,446 cm-1, respectively, blue-shifted by 174 and 695 cm-1 from that of 1,2-dimethoxybenzene. These origins are used to excite a single conformation of each complex selectively and record their IR spectra using IR-UV dip spectroscopy. The alkyl CH stretch region (2800-3000 cm-1) is surprisingly sensitive to the presence and nature of the encapsulated ion. We carried out an exhaustive conformational search of cage conformations for K+-BzCrypt and Ba2+-BzCrypt, identifying two conformations (A and B) that lie below all others in energy. We extend our local mode anharmonic model of the CH stretch region to these strongly bound ion-cage complexes to predict conformation-specific alkyl CH stretch spectra, obtaining quantitative agreement with experiment for conformer A, the gas-phase global minimum. The large electrostatic effect of the charge on the O- and N-lone pairs affects the local mode frequencies of the CH2 groups adjacent to these atoms. The localized CH2 scissors modes are pushed up in frequency by the adjacent O/N-atoms so that their overtones have little effect on the alkyl CH stretch region. However, the localized CH2 wags are nearly degenerate and strongly coupled to one another, producing an array of delocalized wag normal modes, whose highest frequency members reach up above 1400 cm-1. As such, their overtones mix significantly with the CH stretch modes, most notably involving the CH2 symmetric stretch fundamentals of the central ethyl groups in the all-alkyl chains and the CH stretches adjacent to the N-atoms and antiperiplanar to the nitrogen lone pair.

18.
Aging (Albany NY) ; 15(12): 5497-5513, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37382646

RESUMO

Ischemic stroke (IS) is a fatal neurological disease that occurs when the blood flow to the brain is disrupted, leading to brain tissue damage and functional impairment. Cellular senescence, a vital characteristic of aging, is associated with a poor prognosis for IS. This study explores the potential role of cellular senescence in the pathological process following IS by analyzing transcriptome data from multiple datasets (GSE163654, GSE16561, GSE119121, and GSE174574). By using bioinformatics methods, we identified hub-senescence-related genes such as ANGPTL4, CCL3, CCL7, CXCL16, and TNF and verified them using quantitative reverse transcription polymerase chain reaction. Further analysis of single-cell RNA sequencing data suggests that MG4 microglial is highly correlated with cellular senescence in MCAO, and might play a crucial role in the pathological process after IS. Additionally, we identified retinoic acid as a potential drug for improving the prognosis of IS. This comprehensive investigation of cellular senescence in various brain tissues and peripheral blood cell types provides valuable insights into the underlying mechanisms of the pathology of IS and identifies potential therapeutic targets for improving patient outcomes.


Assuntos
AVC Isquêmico , Humanos , AVC Isquêmico/patologia , Encéfalo/metabolismo , Transcriptoma , Envelhecimento/genética , Senescência Celular/genética , Análise de Sequência de RNA
19.
PeerJ Comput Sci ; 9: e1329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346726

RESUMO

The quality evaluation of innovation and entrepreneurship (I&E) in the education sector is achieving worldwide attention as empowering nations with high quality talents is quintessential for economic progress. China, a pioneer in the world market in almost all sectors have transformed its educational policies and incorporated entrepreneurial skills as a part of their education models to further catalyst the country's economic progress. This research focuses on building a novel hybrid Machine Learning (ML) model by integrating two powerful algorithms namely Random Forest (RF) and Logistic Regression (LR) to assess the intensity of the I&E in education from the data acquired from 25 leading Higher Educational Institution's (HEI) in different provinces. The major contributions to the work are, (1) construction of quality index for each topic of interest using individual RF, (2) ranking the indicators based on the quality index to assess the strength and weaknesses, (3) and finally use the LR algorithm study the quality of each indicator. The efficacy of the proposed hybrid model is validated using the benchmark classification metrics to assess its learning and prediction performance in evaluating the quality of I&E education. The result of the research portrays that the universities have now started to integrate entrepreneurship skills as a part of the curriculum, which is evident from the better ranking of the topic curriculum development which is followed by the enrichment of skills. This comprehensive research will help the institutions to identify the potential areas of growth to boost the economic development and improve the skill set necessary for I&E education among college students.

20.
J Phys Chem B ; 127(25): 5609-5619, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37339399

RESUMO

Precisely quantifying the magnitude and direction of electric fields in proteins has long been an outstanding challenge in understanding biological functions. Nitrile vibrational Stark effect probes have been shown to be minimally disruptive to the protein structure and can be better direct reporters of local electrostatic field in the native state of a protein than other measures such as pKa shifts of titratable residues. However, interpretations of the connection between measured vibrational energy and electric field rely on the accurate molecular understanding of interactions of the nitrile group and its environment, particularly from hydrogen bonding. In this work, we compared the extent of hydrogen bonding calculated in two common force fields, the fixed charge force field Amber03 and polarizable force field AMOEBA, at 10 locations of cyanocysteine (CNC) in staphylococcal nuclease (SNase) against the experimental nitrile absorption frequency in terms of full width at half-maximum (FWHM) and frequency temperature line slope (FTLS). We observed that the number of hydrogen bonds correlated well in AMOEBA trajectories with respect to both the FWHM (r = 0.88) and the FTLS (r = -0.85), whereas the correlation of Amber03 trajectories was less reliable because the Amber03 force field predicted more hydrogen bonds in some mutants. Moreover, we demonstrated that contributions from the interactions between CNC and nearby water molecules were significant in AMOEBA trajectories but were not predicted by Amber03. We conclude that although the nitrile absorption peak shape could be qualitatively predicted by the fixed charge Amber03 force field, the detailed electrostatic environment measured by the nitrile probe in terms of the extent of hydrogen bonding could only be accurately observed in the AMOEBA trajectories, where the permanent dipole, quadrupole, and dipole-induced-dipole polarizable interactions were all taken into account. The significance of this finding to the goal of accurately predicting electric fields in complex biomolecular environments is discussed.


Assuntos
Amoeba , Água , Ligação de Hidrogênio , Água/química , Nitrilas/química , Proteínas/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...