Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 122(10): 2213-2222, 2000 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20865137

RESUMO

We report the use of thermodynamic measurements in a self-complementary DNA duplex (5'-dXCGCGCG)(2), where X is an unpaired natural or nonnatural deoxynucleoside, to study the forces that stabilize aqueous aromatic stacking in the context of DNA. Thermal denaturation experiments show that the core duplex (lacking X) is formed with a free energy (37 °C) of -8.1 kcal·mol(-1) in a pH 7.0 buffer containing 1 M Na(+). We studied the effects of adding single dangling nucleosides (X) where the aromatic "base" is adenine, guanine, thymine, cytosine, pyrrole, benzene, 4-methylindole, 5-nitroindole, trimethylbenzene, difluorotoluene, naphthalene, phenanthrene, and pyrene. Adding these dangling residues is found to stabilize the duplex by an additional -0.8 to -3.4 kcal·mol(-1). At 5 µM DNA concentration, T(m) values range from 41.7 °C (core sequence) to 64.1 °C (with dangling pyrene residues). For the four natural bases, the order of stacking ability is A > G ≥ T = C. The nonpolar analogues stack more strongly in general than the more polar natural bases. The stacking geometry was confirmed in two cases (X = adenine and pyrene) by 2-D NOESY experiments. Also studied is the effect of ethanol cosolvent on the stacking of natural bases and pyrene. Stacking abilities were compared to calculated values for hydrophobicity, dipole moment, polarizability, and surface area. In general, hydrophobic effects are found to be larger than other effects stabilizing stacking (electrostatic effects, dispersion forces); however, the natural DNA bases are found to be less dependent on hydrophobic effects than are the more nonpolar compounds. The results also point out strategies for the design nucleoside analogues that stack considerably more strongly than the natural bases; such compounds may be useful in stabilizing designed DNA structures and complexes.

2.
Synlett ; 4: 341-347, 1997 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20336193

RESUMO

We describe the synthesis, structure and DNA incorporation of a class of novel aromatic C-deoxynucleosides in which benzenes and larger polycyclic aromatics serve as DNA base analogs. Novel approaches have been developed for glycosidic bond formation and for epimenzation of the anomeric substitutents to ß-configuration, and we describe some of the properties of such compounds in DNA.

4.
J Am Chem Soc ; 118(33): 7671-7678, 1996 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20865136

RESUMO

We describe the synthesis, structures, and DNA incorporation of deoxyribonucleosides carrying polycyclic aromatic hydrocarbons as the DNA "base" analogue. The new polycyclic compounds are 1-naphthyl, 2-naphthyl, 9-phenanthrenyl, and 1-pyrenyl deoxynucleosides. The compounds are synthesized using a recently developed C-glycosidic bond formation method involving organocadmium derivatives of the aromatic compounds coupling with a 1α-chlorodeoxyribose precursor. The principal products of this coupling are the α-anomers of the deoxyribosides. An efficient method has also been developed for epimerization of the α-anomers to ß-anomers by acid-catalyzed equilibration; this isomerization is successfully carried out on the four polycyclic nucleosides as well as two substituted phenyl nucleosides. The geometry of the anomeric substitution is derived from (1)H NOE experiments and is also correlated with a single-crystal X-ray structure of one α-isomer. Three of the polycyclic C-nucleoside derivatives are incorporated into DNA oligonucleotides via their phosphoramidite derivatives; the pyrenyl and phenanthrenyl derivatives are shown to be fluorescent in a DNA sequence. The results (1) broaden the scope of our C-glycoside coupling reaction, (2) demonstrate that (using a new acid-catalyzed epimerization) both α- and ß-anomers are easily synthesized, and (3) constitute a new class of deoxynucleoside derivatives. Such nucleoside analogues may be useful as biophysical probes for the study of noncovalent interactions such as aromatic π-stacking in DNA. In addition, the fluorescence of the phenanthrene and pyrene nucleosides may make them especially useful as structural probes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...