Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 161: 213892, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795472

RESUMO

Guided bone regeneration (GBR) stands as an essential modality for craniomaxillofacial bone defect repair, yet challenges like mechanical weakness, inappropriate degradability, limited bioactivity, and intricate manufacturing of GBR membranes hindered the clinical efficacy. Herein, we developed a Janus bacterial cellulose(BC)/MXene membrane through a facile vacuum filtration and etching strategy. This Janus membrane displayed an asymmetric bilayer structure with interfacial compatibility, where the dense layer impeded cell invasion and the porous layer maintained stable space for osteogenesis. Incorporating BC with Ti3C2Tx MXene significantly enhanced the mechanical robustness and flexibility of the material, enabling clinical operability and lasting GBR membrane supports. It also contributed to a suitable biodegradation rate, which aligned with the long-term bone repair period. After demonstrating the desirable biocompatibility, barrier role, and osteogenic capability in vitro, the membrane's regenerative potential was also confirmed in a rat cranial defect model. The excellent bone repair performance could be attributed to the osteogenic capability of MXene nanosheets, the morphological cues of the porous layer, as well as the long-lasting, stable regeneration space provided by the GBR membrane. Thus, our work presented a facile, robust, long-lasting, and biodegradable BC/MXene GBR membrane, offering a practical solution to craniomaxillofacial bone defect repair.


Assuntos
Regeneração Óssea , Celulose , Regeneração Tecidual Guiada , Osteogênese , Titânio , Regeneração Óssea/efeitos dos fármacos , Celulose/química , Animais , Ratos , Titânio/química , Titânio/farmacologia , Regeneração Tecidual Guiada/métodos , Osteogênese/efeitos dos fármacos , Membranas Artificiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos Sprague-Dawley , Humanos , Porosidade , Crânio/cirurgia , Crânio/efeitos dos fármacos , Crânio/lesões
2.
MedComm (2020) ; 4(4): e323, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37547175

RESUMO

Myeloid-derived suppressor cells (MDSCs) are an immature group of myeloid-derived cells generated from myeloid cell precursors in the bone marrow. MDSCs appear almost exclusively in pathological conditions, such as tumor progression and various inflammatory diseases. The leading function of MDSCs is their immunosuppressive ability, which plays a crucial role in tumor progression and metastasis through their immunosuppressive effects. Since MDSCs have specific molecular features, and only a tiny amount exists in physiological conditions, MDSC-targeted therapy has become a promising research direction for tumor treatment with minimal side effects. In this review, we briefly introduce the classification, generation and maturation process, and features of MDSCs, and detail their functions under various circumstances. The present review specifically demonstrates the environmental specificity of MDSCs, highlighting the differences between MDSCs from cancer and healthy individuals, as well as tumor-infiltrating MDSCs and circulating MDSCs. Then, we further describe recent advances in MDSC-targeted therapies. The existing and potential targeted drugs are divided into three categories, monoclonal antibodies, small-molecular inhibitors, and peptides. Their targeting mechanisms and characteristics have been summarized respectively. We believe that a comprehensive in-depth understanding of MDSC-targeted therapy could provide more possibilities for the treatment of cancer.

3.
Cancer Cell Int ; 21(1): 565, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702277

RESUMO

BACKGROUND: Oncostatin M (OSM) has been reported to be a key regulating factor in the process of tumor development. Previous studies have demonstrated both the promotion and inhibition effects of OSM in tumors, therefore inspiring controversies. However, no systematic assessment of OSM across various cancers is available, and the mechanisms behind OSM-related cancer progression remain to be elucidated. METHODS: Based on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, we conducted a pan-cancer analysis on OSM to explore its tumor-related functions across cancers as well as its correlations with specific molecules, cells in the tumor microenvironment. Considering the results of pan-cancer analysis, we chose the specific tumor glioblastoma multiforme (GBM) to screen out the OSM-induced signaling pathways and intercellular communications in tumor progression. Wound scratch assay, invasion assay and qRT-PCR were performed to verify the biological effects of OSM on glioblastoma cells. RESULTS: Higher OSM level was found in most tumor tissues compared with corresponding normal tissues, and the enhanced OSM expression was observed to be strongly related to patients' poor prognosis in several cancers. Moreover, the expression of OSM was associated with stromal and immune cell infiltration in the tumor microenvironment, and OSM-related immune checkpoint and chemokine co-expression were also observed. Our results suggested that OSM could communicate extensively with the tumor microenvironment. Taking GBM as an example, our study found that two critical signaling pathways in OSM-related tumor progression by KEGG enrichment analysis: Jak-STAT and NF-κB pathways. Single-cell RNA sequencing data analysis of GBM revealed that OSM was mainly secreted by microglia, and cell-cell interaction analysis proved that OSM-OSMR is an important pathway for OSM to stimulate malignant cells. In vitro, OSM treatment could facilitate the migration and invasion of glioblastoma cells, meanwhile promote the proneural-mesenchymal transition. The administration of STAT3 inhibitors effectively suppressed the OSM-mediated biological effects, which proved the key role of STAT3 in OSM signaling. CONCLUSION: Taken together, our study provides a comprehensive understanding with regard to the tumor progression under the regulation of OSM. OSM seems to be closely related to chronic inflammation and tumor development in the tumor microenvironment. As an important inflammatory factor in the tumor microenvironment, OSM may serve as a potential immunotherapeutic target for cancer treatment, especially for GBM.

4.
PeerJ ; 9: e11451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046262

RESUMO

Artificial intelligence has been emerging as an increasingly important aspect of our daily lives and is widely applied in medical science. One major application of artificial intelligence in medical science is medical imaging. As a major component of artificial intelligence, many machine learning models are applied in medical diagnosis and treatment with the advancement of technology and medical imaging facilities. The popularity of convolutional neural network in dental, oral and craniofacial imaging is heightening, as it has been continually applied to a broader spectrum of scientific studies. Our manuscript reviews the fundamental principles and rationales behind machine learning, and summarizes its research progress and its recent applications specifically in dental, oral and craniofacial imaging. It also reviews the problems that remain to be resolved and evaluates the prospect of the future development of this field of scientific study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...