Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311215

RESUMO

BACKGROUND: As natural polymer materials, barley proteins have been utilized to fabricate nanocarriers to encapsulate and delivery hydrophobic bioactive ingredients. However, as a result of the high proportion of hydrophobic amino acids and structural rigidity, barley protein-based nanocarriers tend to aggregate easily and have a low loading capacity, which greatly limits their application. In the present study, barley proteins were enzymolyzed to fabricate nanomicelles and then applied to encapsulate hydrophobic bioactive ingredient. RESULTS: Self-assembled barley peptides could be obtained by controllable enzymolysis of barley proteins. The obtained barley peptides could self-assemble into nanomicelles (BPNMs) with a diameter of approximately 90 nm when the concentration was > 2.1 µg mL-1. Hydrophobic interaction, disulfide bonds and hydrogen bonds were involved in maintaining the structure of BPNMs. Six self-assembled peptides (QQPFPQ, QTPLPQ, QLPQIPE, QPFPQQPQLPH, QPFPQQPPFGL and QPFPQQPPFWQQQ) were identified and they were characterized by alternating arrangement of hydrophobic amino acids and hydrophilic amino acids. Moreover, BPNMs were utilized to encapsulate hydrophobic bioactive ingredient quercetin. When quercetin was encapsulated by BPNMs, its water solubility was significantly increased, being approximately 30-fold higher than free quercetin. Meanwhile, encapsulation of BPNMs could greatly increase quercetin stability. The interaction between BPNMs and quercetin occurred spontaneously, mainly driven by van der Waals forces and hydrogen bonds. CONCLUSION: In the present study, BPNMs were successfully developed and could be used as a promising delivery system to improve the water solubility and stability of hydrophobic bioactive ingredients. © 2024 Society of Chemical Industry.

2.
Food Chem ; 453: 139642, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788643

RESUMO

Caffeic acid phenethyl ester (CAPE) is a naturally occurring phenolic compound with various biological activities. However, poor water solubility and storage stability limit its application. In this context, sorghum peptides were used to encapsulate CAPE. Sorghum peptides could self-assemble into regularly spherical nanoparticles (SPNs) by hydrophobic interaction and hydrogen bonds. Solubility of encapsulated CAPE was greatly increased, with 9.44 times higher than unencapsulated CAPE in water. Moreover, the storage stability of CAPE in aqueous solution was significantly improved by SPNs encapsulation. In vitro release study indicated that SPNs were able to delay CAPE release during the process of gastrointestinal digestion. Besides, fluorescence quenching analysis showed that a static quenching existed between SPNs and CAPE. The interaction between CAPE and SPNs occurred spontaneously, mainly driven by hydrophobic interactions. The above results suggested that SPNs encapsulation was an effective approach to improve the water solubility and storage stability of CAPE.


Assuntos
Ácidos Cafeicos , Nanopartículas , Peptídeos , Álcool Feniletílico , Solubilidade , Sorghum , Ácidos Cafeicos/química , Sorghum/química , Peptídeos/química , Nanopartículas/química , Álcool Feniletílico/química , Álcool Feniletílico/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Estabilidade de Medicamentos , Composição de Medicamentos , Ligação de Hidrogênio , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA