Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593435

RESUMO

In order to discover novel protoporphyrinogen oxidase (PPO) inhibitors with excellent herbicidal activity, a series of structurally novel 6-(pyridin-2-yl) benzothiazole derivatives were designed based on the scaffold hopping strategy. The in vitro experiments demonstrated that the newly synthesized compounds exhibited noteworthy inhibitory activity against Arabidopsis thaliana PPO (AtPPO), with IC50 values ranging from 0.06 to 1.36 µM. Preliminary postemergence herbicidal activity tests and crop safety studies indicated that some of our compounds exhibited excellent herbicidal activity and crop safety. For instance, compound (rac)-7as exhibited superior herbicidal activities to commercially available flumioxazin (FLU) and saflufenacil (SAF) at all the tested concentrations and showed effective herbicidal activities even at a dosage as low as 18.75 g ai/ha. Meanwhile, compound (rac)-7as showed good crop safety for wheat at a dosage as high as 150 g of ai/ha. Although the absolute configuration of compound 7as has no obvious effect on its herbicidal activity, compound (R)-7as showed a slightly higher crop safety than compound (S)-7as. Molecular simulation studies of Nicotiana tabacum PPO (NtPPO) and our candidate compounds showed that the benzothiazole moiety of compounds (R)-7as or (S)-7as formed multiple π-π stacking interactions with FAD, and the pyridine ring generated π-π stacking with Phe-392. Our finding proved that the pyridyl-benzothiazol hybrids are promising scaffolds for the development of PPO-inhibiting herbicides.

2.
Chem Commun (Camb) ; 59(42): 6351-6354, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37158205

RESUMO

An N-heterocyclic carbene (NHC) catalyzed enantio- and diastereoselective [12+2] cycloaddition is disclosed to rapidly construct sophisticated molecules bearing a tricyclic core and morpholine moiety. The success of our reaction relies on the NHC-catalyzed remote sp3 (C-H) bond activation of a 5H-benzo[a]pyrrolizine-3-carbaldehyde under oxidative conditions. Preliminary studies revealed that our products exhibit superior in vitro bioactivities against two plant pathogens to commercial Bismerthiazol (BT) and Thiodiazole Copper (TC).

3.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241792

RESUMO

An N-heterocyclic carbene (NHC)-catalyzed atroposelective annulation reaction is disclosed for quick and efficient access to thiazine derivatives. A series of axially chiral thiazine derivatives bearing various substituents and substitution patterns were produced in moderate to high yields with moderate to excellent optical purities. Preliminary studies revealed that some of our products exhibit promising antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) that causes rice bacterial blight.

4.
Org Lett ; 24(48): 8907-8913, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36421405

RESUMO

Sulfonamide is a common motif in medicines and agrochemicals. Typically, this class of functional groups is prepared by reacting amines with sulfonyl chlorides that are presynthesized from nitro compounds and thiols, respectively. Here, we report a novel strategy that directly couples nitro compounds and thiols to form sulfonamides atom- and redox-economically. Mechanistic studies suggest our reaction proceeds via direct photoexcitation of nitroarenes that eventually transfers the oxygen atoms from the nitro group to the thiol unit.

5.
Nat Commun ; 13(1): 2846, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606378

RESUMO

The carbene and photocatalyst co-catalyzed radical coupling of acyl electrophile and a radical precursor is emerging as attractive method for ketone synthesis. However, previous reports mainly limited to prefunctionalized radical precursors and two-component coupling. Herein, an N-heterocyclic carbene and photocatalyst catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles is disclosed, in which the carboxylic acids are directly used as radical precursors. The acyl imidazoles could also be generated in situ by reaction of a carboxylic acid with CDI thus furnishing a formally decarboxylative coupling of two carboxylic acids. In addition, the reaction is successfully extended to three-component coupling by using alkene as a third coupling partner via a radical relay process. The mild conditions, operational simplicity, and use of carboxylic acids as the reacting partners make our method a powerful strategy for construction of complex ketones from readily available starting materials, and late-stage modification of natural products and medicines.


Assuntos
Ácidos Carboxílicos , Cetonas , Catálise , Imidazóis , Metano/análogos & derivados
6.
Nat Commun ; 13(1): 84, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013298

RESUMO

Axially chiral styrenes bearing a chiral axis between a sterically non-congested acyclic alkene and an aryl ring are difficult to prepare due to low rotational barrier of the axis. Disclosed here is an N-heterocyclic carbene (NHC) catalytic asymmetric solution to this problem. Our reaction involves ynals, sulfinic acids, and phenols as the substrates with an NHC as the catalyst. Key steps involve selective 1,4-addition of sulfinic anion to acetylenic acylazolium intermediate and sequential E-selective protonation to set up the chiral axis. Our reaction affords axially chiral styrenes bearing a chiral axis as the product with up to > 99:1 e.r., > 20:1 E/Z selectivity, and excellent yields. The sulfone and carboxylic ester moieties in our styrene products are common moieties in bioactive molecules and asymmetric catalysis.

7.
Chem Sci ; 12(30): 10259-10265, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34377413

RESUMO

The construction of an isoquinoline skeleton typically starts with benzene derivatives as substrates with the assistance of acids or transition metals. Disclosed here is a concise approach to prepare isoquinoline analogues by starting with pyridines to react with ß-ethoxy α,ß-unsaturated carbonyl compounds under basic conditions. Multiple substitution patterns and a relatively large number of functional groups (including those sensitive to acidic conditions) can be tolerated in our method. In particular, our protocol allows for efficient access to tricyclic isoquinolines found in hundreds of natural products with interesting bioactivities. The efficiency and operational simplicity of introducing structural complexity into the isoquinoline frameworks can likely enable the collective synthesis of a large set of natural products. Here we show that fredericamycin A could be obtained via a short route by using our isoquinoline synthesis as a key step.

8.
Nat Commun ; 10(1): 1934, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036844

RESUMO

Organoboron compounds are highly valuable in synthetic chemistry. In particular, α-borylcarbonyl compounds have shown versatile synthetic applications, owing to fruitful chemistries of both the boryl and carbonyl moieties. However, the synthesis of these molecules still remains tedious and time-consuming. Here we report a straightforward and practical route to synthesize α-borylcarbonyl molecules based on a regioselective radical α-borylation of α,ß-unsaturated carbonyl compounds. The reaction features unusual α-regioselectivity and high functional-group compatibility. Further synthetic applications of new α-borylated products were also demonstrated. DFT and kinetic studies implicated that the α-regioselectivity of ß-aryl-α,ß-unsaturated carbonyl compounds was determined by the thermodynamically more favorable radical α-addition step, whereas the formation of α-addition products from ß-alkyl-α,ß-unsaturated carbonyl compounds was driven by an energetically favored hydrogen atom transfer step. Given that α,ß-unsaturated carbonyl compounds can be easily obtained in abundance and variety, this method enjoys great advantages in diverse and economical synthesis of valuable α-borylcarbonyl molecules.

9.
J Integr Plant Biol ; 61(10): 1043-1061, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31127689

RESUMO

The phloem, located within the vascular system, is critical for delivery of nutrients and signaling molecules throughout the plant body. Although the morphological process and several factors regulating phloem differentiation have been reported, the molecular mechanism underlying its initiation remains largely unknown. Here, we report that the small peptide-coding gene, CLAVATA 3 (CLV3)/EMBEYO SURROUNDING REGION 25 (CLE25), the expression of which begins in provascular initial cells of 64-cell-staged embryos, and continues in sieve element-procambium stem cells and phloem lineage cells, during post-embryonic root development, facilitates phloem initiation in Arabidopsis. Knockout of CLE25 led to delayed protophloem formation, and in situ expression of an antagonistic CLE25G6T peptide compromised the fate-determining periclinal division of the sieve element precursor cell and the continuity of the phloem in roots. In stems of CLE25G6T plants the phloem formation was also compromised, and procambial cells were over-accumulated. Genetic and biochemical analyses indicated that a complex, consisting of the CLE-RESISTANT RECEPTOR KINASE (CLERK) leucine-rich repeat (LRR) receptor kinase and the CLV2 LRR receptor-like protein, is involved in perceiving the CLE25 peptide. Similar to CLE25, CLERK was also expressed during early embryogenesis. Taken together, our findings suggest that CLE25 regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Floema/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
Org Lett ; 20(8): 2360-2364, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29624068

RESUMO

A radical borylative cyclization reaction of 1,6-dienes was developed to assemble boron-handled six-membered heterocycles and carbocycles. This reaction was initiated by the chemo- and regio-controlled addition of an N-heterocyclic carbene-boryl radical to one of the alkene tethers, followed by an intramolecular 6- exo cyclization to afford a six-membered ring framework. The utility of this method was demonstrated in the synthesis of diverse paroxetine analogues through late-stage derivatization of the boryl functional unit.

11.
Plant Physiol ; 175(3): 1186-1202, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28916592

RESUMO

The CLAVATA3/ESR-RELATED (CLE) peptide signals are required for cell-cell communication in several plant growth and developmental processes. However, little is known regarding the possible functions of the CLEs in the anther. Here, we show that a T-DNA insertional mutant, and dominant-negative (DN) and overexpression (OX) transgenic plants of the CLE19 gene, exhibited significantly reduced anther size and pollen grain number and abnormal pollen wall formation in Arabidopsis (Arabidopsis thaliana). Interestingly, the DN-CLE19 pollen grains showed a more extensively covered surface, but CLE19-OX pollen exine exhibited clearly missing connections in the network and lacked separation between areas that normally form the lacunae. With a combination of cell biological, genetic, and transcriptomic analyses on cle19, DN-CLE19, and CLE19-OX plants, we demonstrated that CLE19-OX plants produced highly vacuolated and swollen aborted microspores (ams)-like tapetal cells, lacked lipidic tapetosomes and elaioplasts, and had abnormal pollen primexine without obvious accumulation of sporopollenin precursors. Moreover, CLE19 is important for the normal expression of more than 1,000 genes, including the transcription factor gene AMS, 280 AMS-downstream genes, and other genes involved in pollen coat and pollen exine formation, lipid metabolism, pollen germination, and hormone metabolism. In addition, the DN-CLE19(+/+) ams(-/-) plants exhibited the ams anther phenotype and ams(+/-) partially suppressed the DN-CLE19 transgene-induced pollen exine defects. These findings demonstrate that the proper amount of CLE19 signal is essential for the normal expression of AMS and its downstream gene networks in the regulation of anther development and pollen exine formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Perfilação da Expressão Gênica , Pólen/citologia , Pólen/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Lipídeos/química , Modelos Biológicos , Mutagênese Insercional , Mutação/genética , Fenóis/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Pólen/ultraestrutura , Tubo Polínico/citologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/ultraestrutura , Reprodução , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Am Chem Soc ; 139(17): 6050-6053, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28402108

RESUMO

A synthetic method to construct boron-handled cyclic molecules was developed based on a radical borylation/cyclization cascade of 1,6-enynes. The process was initiated by the chemo- and regio-controlled addition of an N-heterocyclic carbene-boryl radical to an alkene or alkyne, followed by ring closure to afford boron-substituted cyclic skeletons. Further molecular transformations of the cyclic products to synthetically useful building blocks were also demonstrated.

13.
J Exp Bot ; 66(17): 5217-27, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071532

RESUMO

Embryo and endosperm development are two well co-ordinated developmental processes in seed formation; however, signals involved in embryo and endosperm interactions remain poorly understood. It has been shown before that CLAVATA3/ESR-RELATED 19 (CLE19) peptide is able to trigger root meristem consumption in a CLV2-dependent manner. In this study, the role of CLE19 in Arabidopsis seed development was explored using antagonistic peptide technology. CLE19 is expressed in the epidermal layers of the cotyledon primordia, hypocotyl, and root cap in the embryo. Transgenic plants carrying an antagonistic CLE19 G6T construct expressed under the control of CLE19 regulatory elements exhibited a dominant seed abortion phenotype, with defective cotyledon establishment in embryos and delayed nuclear proliferation and cellularization in endosperms. Ectopic expression of CLE19 G6T in Arabidopsis under the control of an endosperm-specific ALE1 promoter led to a similar defect in cotyledon establishment in embryos but without an evident effect on endosperm development. We therefore propose that CLE19 may act as a mobile peptide co-ordinating embryo and endosperm development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cotilédone/embriologia , Cotilédone/genética , Cotilédone/metabolismo , Endosperma/embriologia , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/embriologia , Sementes/genética , Sementes/metabolismo
14.
BMC Plant Biol ; 13: 225, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24369789

RESUMO

BACKGROUND: Although it is known that CLAVATA3 (CLV3) acts as 12- and/or 13-amino acid (AA) secreted peptides to regulate the number of stem cells in shoot apical meristems (SAMs), how functional CLV3 peptides are generated and if any particular sequences are required for the processing remain largely unknown. RESULTS: We developed a mass spectrometry (MS)-based in vitro assay to monitor the cleavage of heterologously produced CLV3 fusion protein. Through co-cultivation of the fusion protein with Arabidopsis seedlings, we identified two cleavage sites: the previously reported one before Arg70 and a new one before Met39. Using synthetic peptides together with MALDI-Tof-MS analyses, we demonstrated that the non-conserved 5-AA motifs flanking N-termini of the CLV3 and its orthologous CLE1 peptides were critical for their cleavages and optimal activities in vitro. We also found that substitutions of Leu69 by Ala in fusion protein and in synthetic peptide of CLV3 compromised their cleavages, leading to significantly reduced activities in regulating the sizes of shoot and root meristems. CONCLUSIONS: These results suggest that 5-AA residues flanking the N-terminus of CLV3 peptide are required for proper cleavages and optimal function in stem cell regulation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Células-Tronco/citologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Bioensaio , Leucina/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Raízes de Plantas/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Plântula/crescimento & desenvolvimento , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células-Tronco/metabolismo , Relação Estrutura-Atividade
15.
Plant Signal Behav ; 8(9)2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23803748

RESUMO

CLV3 acts as a peptide ligand to interact with leucine-rich repeat (LRR) receptor kinases in neighboring cells to restrict the size of shoot apical meristems (SAMs) in Arabidopsis. To examine contributions of individual amino acid residues in CLV3 peptide in SAM maintenance, 12 synthetic Ala-substituted CLV3 peptides were applied to clv3-2 seedlings cultured in vitro, and the sizes of SAMs were measured after 9 d. The result showed that Pro-9 and His-11 are the most critical residues, while Val-3 and Ser-5 are the least important ones for CLV3 functions in SAMs in vitro. With MALDI-TOF mass spectrum analyses, we further showed that Ala substitution in His-11 led to a greatly reduced stability of the peptide, leading to a complete degradation of the peptide after cultured with seedlings for only one hour. The substitution of Pro-9 by Ala also led to a complete degradation of the peptides after 2 d incubation. In contrast, Ala substitutions in Val-3 or Ser-5 gave very little changes on peptide stabilities. These results suggested that stabilities of Ala-substituted CLV3 peptides are positively correlated with their activities in SAMs. We thus propose that the stability of CLV3 may partially contribute to its function in SAM maintenance.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Substituição de Aminoácidos , Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Meristema/metabolismo , Estabilidade Proteica , Relação Estrutura-Atividade
16.
Plant Physiol ; 161(3): 1076-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23321419

RESUMO

In recent years, peptide hormones have been recognized as important signal molecules in plants. Genetic characterization of such peptides is challenging since they are usually encoded by small genes. As a proof of concept, we used the well-characterized stem cell-restricting CLAVATA3 (CLV3) to develop an antagonistic peptide technology by transformations of wild-type Arabidopsis (Arabidopsis thaliana) with constructs carrying the full-length CLV3 with every residue in the peptide-coding region replaced, one at a time, by alanine. Analyses of transgenic plants allowed us to identify one line exhibiting a dominant-negative clv3-like phenotype, with enlarged shoot apical meristems and increased numbers of floral organs. We then performed second dimensional amino acid substitutions to replace the glycine residue individually with the other 18 possible proteinaceous amino acids. Examination of transgenic plants showed that a glycine-to-threonine substitution gave the strongest antagonistic effect in the wild type, in which over 70% of transgenic lines showed the clv3-like phenotype. Among these substitutions, a negative correlation was observed between the antagonistic effects in the wild type and the complementation efficiencies in clv3. We also demonstrated that such an antagonistic peptide technology is applicable to other CLV3/EMBRYO SURROUNDING REGION (CLE) genes, CLE8 and CLE22, as well as in vitro treatments. We believe this technology provides a powerful tool for functional dissection of widely occurring CLE genes in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas/genética , Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Arabidopsis/embriologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Genes Dominantes , Teste de Complementação Genética , Glucuronidase/metabolismo , Meristema/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Plantas Geneticamente Modificadas , Sementes/metabolismo
17.
Mol Plant ; 5(2): 515-23, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22259020

RESUMO

As a peptide hormone, CLV3 restricts the stem cell number in shoot apical meristem (SAM) by interacting with CLV1/CLV2/CRN/RPK2 receptor complexes. To elucidate how the function of the CLV3 peptide in SAM maintenance is established at the amino acid (AA) level, alanine substitutions were performed by introducing point mutations to individual residues in the peptide-coding region of CLV3 and its flanking sequences. Constructs carrying such substitutions, expressed under the control of CLV3 regulatory elements, were transformed to the clv3-2 null mutant to evaluate their efficiencies in complementing its defects in SAMs in vivo. These studies showed that aspartate-8, histidine-11, glycine-6, proline-4, arginine-1, and proline-9, arranged in an order of importance, were critical, while threonine-2, valine-3, serine-5, and the previously assigned hydroxylation and arabinosylation residue proline-7 were trivial for the endogenous CLV3 function in SAM maintenance. In contrast, substitutions of flanking residues did not impose much damage on CLV3. Complementation of different alanine-substituted constructs was confirmed by measurements of the sizes of SAMs and the WUS expression levels in transgenic plants. These studies established a complete contribution map of individual residues in the peptide-coding region of CLV3 for its function in SAM, which may help to understand peptide hormones in general.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência Conservada/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...