Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 13(11): e4692, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37323639

RESUMO

Phosphorus is an essential nutrient for plants. Green algae usually store excess P as polyphosphate (polyP) in the vacuoles. PolyP, a linear chain of three to hundreds of phosphate residues linked by phosphoanhydride bonds, is important for cell growth. Based on the previous method of polyP purification with silica gel columns (Werner et al., 2005; Canadell et al., 2016) in yeast cells, we developed a protocol to purify and determine the total P and polyP in Chlamydomonas reinhardtii by a quick, simplified, and quantitative method. We use hydrochloric acid or nitric acid to digest polyP or total P in dried cells and analyze P content using the malachite green colorimetric method. This method may be applied to other microalgae.

2.
Plant Biotechnol J ; 21(7): 1373-1382, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36920783

RESUMO

As a finite and non-renewable resource, phosphorus (P) is essential to all life and crucial for crop growth and food production. The boosted agricultural use and associated loss of P to the aquatic environment are increasing environmental pollution, harming ecosystems, and threatening future global food security. Thus, recovering and reusing P from water bodies is urgently needed to close the P cycle. As a natural, eco-friendly, and sustainable reclamation strategy, microalgae-based biological P recovery is considered a promising solution. However, the low P-accumulation capacity and P-removal efficiency of algal bioreactors restrict its application. Herein, it is demonstrated that manipulating genes involved in cellular P accumulation and signalling could triple the Chlamydomonas P-storage capacity to ~7% of dry biomass, which is the highest P concentration in plants to date. Furthermore, the engineered algae could recover P from wastewater almost three times faster than the unengineered one, which could be directly used as a P fertilizer. Thus, engineering genes involved in cellular P accumulation and signalling in microalgae could be a promising strategy to enhance P uptake and accumulation, which have the potential to accelerate the application of algae for P recovery from the water body and closing the P cycle.


Assuntos
Microalgas , Fósforo , Ecossistema , Água , Águas Residuárias
3.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887104

RESUMO

Soil is a main source of fluoride for plants. The tea plants (Camellia sinensis) accumulate excessive amounts of fluoride in their leaves compared to other plants, but their fluoride tolerance mechanism is poorly understood. A chloroplast fluoride efflux gene (CsABCB9) was newly discovered by using transcriptome analysis, cloned from Camellia sinensis, and its function was demonstrated in the fluoride detoxication mechanism in Escherichia coli/Xenopus laevis oocytes and Arabidopsis thaliana. CsABCB9 is expressed in tea leaves upon F− treatment. The growth of tea, E. coli, and Arabidopsis were inhibited by F− treatment. However, growth of CsABCB9-overexpression in E. coli was shown to increase with lower fluoride content under F− treatment compared to the control. Furthermore, chlorophyll, xanthophyll and soluble sugar contents of CsABCB9-overexpression in Arabidopsis were improved under F− treatment compared to the wild type. CsABCB9 functions in fluoride transport, and the mechanism by which CsABCB9 improves fluoride resistance in tea is mainly chloroplast protection through fluoride efflux.


Assuntos
Arabidopsis , Camellia sinensis , Arabidopsis/genética , Camellia sinensis/genética , Cloroplastos/genética , Escherichia coli/genética , Fluoretos/farmacologia , Folhas de Planta/genética , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...