Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 69(4): 415-422, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30339490

RESUMO

An ethylene/air inverse diffusion flame (IDF) burner was employed to generate a stable flame, and selenium was introduced into the combustion flame in vapor phase under different air-fuel ratio (A/F) with SO2 additive. At different height above burner (HAB) along the flame edge, selenium of different speciation (gaseous selenium and particulate selenium) was sampled via the U.S. EPA method 29, and the samples were determined by hydride generation atomic fluorescence spectrometry (HG-AFS), in order to study the mechanism of transformation and enrichment behavior of selenium during the combustion process. The results showed that selenium presented in vapor phase, crossing the flame into air, which means gaseous phase is the main form of selenium during combustion process. Both gaseous selenium and particulate selenium increased with elevated temperature from 820K to 1650K, suggesting that higher temperature is beneficial to the release of selenium. Low concentration of sulfur dioxide would increase the concentration of particulate selenium and gaseous selenium, and accelerate the release of selenium. Implications: The enrichment behavior of selenium and its transformation in combustion flame were studied. The results showed that gaseous selenium is found in higher quantity in compared to particulate selenium during combustion. Higher temperature and air-fuel ratio will cause an increase in the formation of selenium. While the presence of sulfur dioxide in a range of 0-200 ppm will promote the release of selenium, higher sulfur dioxide level in a range of 200-350 ppm will have a reverse effect.


Assuntos
Poluentes Atmosféricos/química , Material Particulado/química , Selênio/química , Incêndios
2.
J Air Waste Manag Assoc ; 64(12): 1342-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25562930

RESUMO

Particulate matter (PM) has been becoming the principal urban pollutant in many major cities in China, and even all over the world. It is reported that the coal combustion process is one of the main sources of PM in the atmosphere. Therefore, an investigation of formation and emission of fine primary PM in coal combustion was conducted. First, the sources and classification of coal-fired primary PM were discussed; then their formation pathways during the coal combustion process were analyzed in detail. Accordingly, the emission control methods for fine particles generated from coal-fired power plants were put forward, and were classified as precombustion control, in-combustion control, and postcombustion control. Precombustion control refers to the processes for improving the coal quality before combustion, such as coal type selection and coal preparation. In-combustion control means to take measures for adjusting the combustion conditions and injection of additives during the combustion process to abate the formation of PM. Postcombustion control is the way that the fine PM are aggregated into larger ones by some agglomeration approaches and subsequently are removed by dust removal devices, or some high-performance modifications of conventional particle emission control devices (PECDs) can be taken for capturing fine particles. Finally, some general management suggestions are given for reducing fine PM emission in coal-fired power plants. Implications: The analysis and discussions of coal properties and its combustion process are critical to recognizing the formation and emission of the fine primary PM in combustion. The measures of precombustion, in-combustion, and postcombustion control based on the analysis and discussions are favorable for abating the PM emission. Practically, some measures of implementation do need the support of national policies, even needing to sacrifice economy to gain environmental profit, but this is the very time to execute these, and high-performances PECDs, especially novel devices, should be used for removing fine PM in flue gas.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Carvão Mineral/análise , Monitoramento Ambiental , Material Particulado/análise , Centrais Elétricas , China , Monitoramento Ambiental/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...