Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 182: 108325, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995388

RESUMO

The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.


Assuntos
Alginatos , Microbiota , Alginatos/metabolismo , Bactérias/genética , Água do Mar/microbiologia
2.
Mar Genomics ; 67: 101007, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682850

RESUMO

Marinimicrobium sp. C6131, which had the ability to degrade chitin, was isolated from deep-sea sediment of the southwest Indian Ocean. Here, the genome of strain C6131 was sequenced and the chitin metabolic pathways were constructed. The genome contained a circular chromosome of 4,207,651 bp with a G + C content of 58.50%. A total of 3471 protein-coding sequences were predicted. Gene annotation and metabolic pathway reconstruction showed that strain C6131 possessed genes and two metabolic pathways involved in chitin catabolism: the hydrolytic chitin utilization pathway initiated by chitinases and the oxidative chitin utilization pathway initiated by lytic polysaccharide monooxygenases. Chitin is the most abundant polysaccharide in the ocean. Degradation and recycling of chitin driven by marine bacteria are crucial for biogeochemical cycles of carbon and nitrogen in the ocean. The genomic information of strain C6131 revealed its genetic potential involved in chitin metabolism. The strain C6131 could grow with colloidal chitin as the sole carbon source, indicating that these genes would have functions in chitin degradation and utilization. The genomic sequence of Marinimicrobium sp. C6131 could provide fundamental information for future studies on chitin degradation, and help to improve our understanding of the chitin degradation process in deep-sea environments.


Assuntos
Gammaproteobacteria , Genoma Bacteriano , Genômica , Quitina/metabolismo , Carbono
3.
Nat Commun ; 13(1): 5899, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202810

RESUMO

Oxidative degradation of chitin, initiated by lytic polysaccharide monooxygenases (LPMOs), contributes to microbial bioconversion of crystalline chitin, the second most abundant biopolymer in nature. However, our knowledge of oxidative chitin utilization pathways, beyond LPMOs, is very limited. Here, we describe a complete pathway for oxidative chitin degradation and its regulation in a marine bacterium, Pseudoalteromonas prydzensis. The pathway starts with LPMO-mediated extracellular breakdown of chitin into C1-oxidized chitooligosaccharides, which carry a terminal 2-(acetylamino)-2-deoxy-D-gluconic acid (GlcNAc1A). Transmembrane transport of oxidized chitooligosaccharides is followed by their hydrolysis in the periplasm, releasing GlcNAc1A, which is catabolized in the cytoplasm. This pathway differs from the known hydrolytic chitin utilization pathway in enzymes, transporters and regulators. In particular, GlcNAc1A is converted to 2-keto-3-deoxygluconate 6-phosphate, acetate and NH3 via a series of reactions resembling the degradation of D-amino acids rather than other monosaccharides. Furthermore, genomic and metagenomic analyses suggest that the chitin oxidative utilization pathway may be prevalent in marine Gammaproteobacteria.


Assuntos
Quitina , Oxigenases de Função Mista , Aminoácidos , Bactérias/metabolismo , Quitina/metabolismo , Oxigenases de Função Mista/metabolismo , Monossacarídeos , Fosfatos , Polissacarídeos/metabolismo
4.
Mar Drugs ; 20(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323464

RESUMO

Chitooligosaccharides (COSs) have been widely used in agriculture, medicine, cosmetics, and foods, which are commonly prepared from chitin with chitinases. So far, while most COSs are prepared from colloidal chitin, chitinases used in preparing COSs directly from natural crystalline chitin are less reported. Here, we characterize three chitinases, which were identified from the marine bacterium Pseudoalteromonas flavipulchra DSM 14401T, with an ability to degrade crystalline chitin into (GlcNAc)2 (N,N'-diacetylchitobiose). Strain DSM 14401 can degrade the crystalline α-chitin in the medium to provide nutrients for growth. Genome and secretome analyses indicate that this strain secretes six chitinolytic enzymes, among which chitinases Chia4287, Chib0431, and Chib0434 have higher abundance than the others, suggesting their importance in crystalline α-chitin degradation. These three chitinases were heterologously expressed, purified, and characterized. They are all active on crystalline α-chitin, with temperature optima of 45-50 °C and pH optima of 7.0-7.5. They are all stable at 40 °C and in the pH range of 5.0-11.0. Moreover, they all have excellent salt tolerance, retaining more than 92% activity after incubation in 5 M NaCl for 10 h at 4 °C. When acting on crystalline α-chitin, the main products of the three chitinases are all (GlcNAc)2, which suggests that chitinases Chia4287, Chib0431, and Chib0434 likely have potential in direct conversion of crystalline chitin into (GlcNAc)2.


Assuntos
Proteínas de Bactérias/química , Quitina/química , Quitinases/química , Dissacarídeos/química , Pseudoalteromonas/enzimologia , Proteínas de Bactérias/isolamento & purificação , Quitinases/isolamento & purificação , Genoma Bacteriano , Pseudoalteromonas/genética , Cloreto de Sódio/química
5.
Environ Microbiol ; 24(1): 98-109, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913576

RESUMO

Based on 16S rRNA gene analyses, the same bacterial operational taxonomic units (OTUs) are common to both the Arctic and Antarctic oceans, supporting the concept 'everything is everywhere'. However, whether the same OTUs from both poles have identical genomes, i.e. whether 'everything is still everywhere' at the genomic level has not yet been examined systematically. Here, we isolated, sequenced and compared the genomes of 45 culturable marine bacteria belonging to three genera of Salinibacterium, Psychrobacter and Pseudoalteromonas from both polar oceans. The bacterial strains with identical 16S rRNA genes were common to both poles in every genus, and four identical genomes were detected in the genus Salinibacterium from the Arctic region. However, no identical genomes were observed from opposite poles in this study. Our data, therefore, suggest that 'everything is not everywhere' at the genomic level. The divergence time between bacteria is hypothesized to exert a strong impact on the bacterial biogeography at the genomic level. The geographical isolation between poles was observed for recently diverged, highly similar genomes, but not for moderately similar genomes. This study thus improves our understanding of the factors affecting the genomic-level biogeography of marine microorganisms isolated from distant locations.


Assuntos
Genômica , Pseudoalteromonas , Regiões Antárticas , Geografia , Filogenia , Pseudoalteromonas/genética , RNA Ribossômico 16S/genética
6.
Mar Genomics ; 59: 100874, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34493388

RESUMO

Pelagovum pacificum SM1903T, belonging to a novel genus of the family Rhodobacteraceae, was isolated from the surface seawater of the Mariana Trench. Here, we report the first complete genome sequence of the novel genus Pelagovum. The genome of strain SM1903T consists of a circular chromosome of 4,040,866 bp and two plasmids of 41,363 bp and 9705 bp, respectively. Gene annotation and metabolic pathway analyses showed that strain SM1903T possesses a series of genes related to adaptation to marine oligotrophic environments, which are involved in utilization of aromatic compounds, allantoin, and alkylphosphonate, and second messenger signaling in response to the oligotrophic stress. This strain also contains a variety of genes involved in coping with other stresses including osmotic stress, oxidative stress, cold shock, and heat shock. These features would assist this strain to survive under the natural nutrient limitation and other stresses from the environment. The genome of strain SM1903T of the novel genus Pelagovum would deepen our knowledge on marine bacterioplankton and their adaption strategies to marine oligotrophic environments.


Assuntos
Genoma Bacteriano , Rhodobacteraceae , Composição de Bases , Filogenia , Rhodobacteraceae/genética , Água do Mar
7.
Front Microbiol ; 12: 609393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584613

RESUMO

Alginate, mainly derived from brown algae, is an important carbon source that can support the growth of marine microorganisms in the Arctic and Antarctic regions. However, there is a lack of systematic investigation and comparison of alginate utilization pathways in culturable bacteria from both polar regions. In this study, 88 strains were isolated from the Arctic and Antarctic regions, of which 60 strains could grow in the medium with alginate as the sole carbon source. These alginate-utilizing strains belong to 9 genera of the phyla Proteobacteria and Bacteroidetes. The genomes of 26 alginate-utilizing strains were sequenced and genomic analyses showed that they all contain the gene clusters related to alginate utilization. The alginate transport systems of Proteobacteria differ from those of Bacteroidetes and there may be unique transport systems among different genera of Proteobacteria. The biogeographic distribution pattern of alginate utilization genes was further investigated. The alginate utilization genes are found to cluster according to bacterial taxonomy rather than geographic location, indicating that the alginate utilization genes do not evolve independently in both polar regions. This study systematically illustrates the alginate utilization pathways in culturable bacteria from the Arctic and Antarctic regions, shedding light into the distribution and evolution of alginate utilization pathways in polar bacteria.

8.
Int J Syst Evol Microbiol ; 70(12): 6155-6162, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33052807

RESUMO

A Gram-stain-negative, aerobic, ovoid-rod-shaped bacterium, designated strain SM1903T, was isolated from surface seawater of the Mariana Trench. The strain grew at 15-37 °C (optimum, 35 °C) and with 1-15 % (optimum, 4 %) NaCl. It hydrolysed aesculin but did not reduce nitrate to nitrite and hydrolyse Tween 80. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1903T formed a separate lineage within the family Rhodobacteraceae, sharing the highest 16S rRNA gene sequence similarity with type strains of Pseudooceanicola antarcticus (95.7 %) and Roseisalinus antarcticus (95.7 %). In phylogenetic trees based on single-copy OCs and whole proteins sequences, strain SM1903T fell within a sub-cluster encompassed by Oceanicola granulosus, Roseisalinus antarcticus and Histidinibacterium lentulum and formed a branch adjacent to Oceanicola granulosus. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and 11-methyl-C18 : 1 ω7c. The polar lipids mainly comprised phosphatidylglycerol, phosphatidylcholine, one unidentified lipid, one unidentified aminolipid, and one unidentified glycolipid. The solo respiratory quinone was ubiquinone-10. The genomic DNA G+C content of strain SM1903T was 66.0 mol%. Based on the results of phenotypic, chemotaxonomic, and phylogenetic characterization for strain SM1903T, it is considered to represent a novel species of a novel genus in the family Rhodobacteraceae, for which the name Pelagovum pacificum gen. nov., sp. nov. is proposed. The type strain is SM1903T (=MCCC 1K03608T=KCTC 72046T).


Assuntos
Filogenia , Rhodobacteraceae/classificação , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Oceano Pacífico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
9.
Int J Syst Evol Microbiol ; 70(3): 2096-2102, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31999242

RESUMO

A Gram-stain-negative, facultatively anaerobic, flagellated and rod-shaped bacterium, designated strain SM1901T, was isolated from a brown algal sample collected from Kings Bay, Svalbard, Arctic. Strain SM1901T grew at -4‒30 °C and with 0-7.0 % (w/v) NaCl. It reduced nitrate to nitrite and hydrolysed DNA and Tween 80. Results of phylogenetic analyses based on 16S rRNA gene sequences indicated that strain SM1901T was affiliated with the genus Shewanella, showing the highest sequence similarity to the type strain of Shewanella litoralis (97.5%), followed by those of Shewanella vesiculosa, Shewanella livingstonensis and Shewanella saliphila (97.3 % for all three). The major cellular fatty acids were summed feature 3 (C16 : 1 ω7с and/or C16 : 1 ω6с), C16 : 0, C18 : 0, iso-C15 : 0 and C17 : 1 ω8с and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The respiratory quinones were ubiquinones Q-7, Q-8, menaquinones MK-7(H) and MK-8. The genome of strain SM1901T was 4648537 nucleotides long and encoded a variety of cold adaptation related genes, providing clues for better understanding the ecological adaptation mechanisms of polar bacteria. The genomic DNA G+C content of strain SM1901T was 40.5 mol%. Based on the polyphasic evidence presented in this paper, strain SM1901T was considered to represent a novel species, constituting a novel psychrotolerant lineage out of the known SF clade encompassed by polar Shewanella species, within the genus Shewanella, for which the name Shewanella polaris sp. nov. is proposed. The type strain is SM1901T (=KCTC 72047T=MCCC 1K03585T).


Assuntos
Phaeophyceae/microbiologia , Shewanella/classificação , Regiões Árticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Shewanella/isolamento & purificação , Svalbard , Ubiquinona/química , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Mar Genomics ; 38: 21-23, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28869183

RESUMO

Strain DSM9414, the type strain of Pseudoalteromonas espejiana, is a Gram-negative, and amino-acid-requiring stain isolated from seawater off the coast of Northern California. In this study, we report the complete genome sequence of Pseudoalteromonas espejiana DSM9414T. The genome (4,500,451bp; 40.3% G+C) is composed of two circular chromosomes: chromosome I is 3,720,756bp with 40.4% G+C content and chromosome II is 779,695bp with 39.8% G+C content. Genomic analysis showed that chromosome I encodes a complete set of ABC transporters responsible for branched-chain amino acids, whose homologous proteins were not discovered in other Pseudoalteromonas genomes released. This result indicated the tight dependence of extracellular amino acids for strain DSM9414T, which is consistent with its phenotype. The complete genome sequence of P. espejiana provides further genetic insights into the diversity of dependence on extracellular amino acids for Pseudoalteromonas species.


Assuntos
Genoma Bacteriano , Pseudoalteromonas/genética , California , Sequenciamento Completo do Genoma
11.
Langmuir ; 28(20): 7711-9, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22548275

RESUMO

Triad hybrid multilayers containing the light sensitizers of zinc tetrapyridylporphyrin (ZnTPyP) and pyridine-functionalized TiO(2) (TiO(2)-Py) nanoparticles were constructed on substrate surfaces with the use of Pd(II) ions as the connectors using the layer-by-layer (LBL) method. The assembly process was monitored using ultraviolet-visible (UV-vis) absorption and X-ray photoelectron spectra as well as scanning electron microscopy and atomic force microscopy. The content of the pyridine substituents in the TiO(2)-Py nanocomposites was about 2% (w/w). The Soret absorption band of ZnTPyP was 24 nm red-shifted in the hybrid multilayers due to a strong intermolecular electronic coupling interaction among porphyrin macrocycles or porphyrin macrocycle/TiO(2)-Py nanoparticles. The average surface density of each ZnTPyP layer was about 1.4 × 10(-10) mol/cm(2). Aggregation of the small TiO(2)-Py nanoparticles to larger domains with sizes up to hundreds of nanometers occurred in the hybrid multilayers; however, such an aggregation behavior was weaker than that in the solutions. The quartz substrate modified with the as-prepared Pd/ZnTPyP/Pd/TiO(2)-Py triad hybrid multilayers was used as a heterogeneous photocatalyst for the degradation of methyl orange (MO) under irradiation (λ > 420 nm) at room temperature with a catalytic efficiency of about 1.3 × 10(-3) MO/ZnTPyP·s. Without the use of the filter, the catalytic efficiency increased because both ZnTPyP and TiO(2)-Py nanocomposites acted as the light sensitizers. It is suggested that the present heterogeneous catalyst has the advantages of facile separation, high stability, structural controllability on the molecular and nanoscale level, and good recyclability.


Assuntos
Metaloporfirinas/química , Nanocompostos/química , Paládio/química , Processos Fotoquímicos , Piridinas/química , Titânio/química , Zinco/química , Compostos Azo/química , Catálise , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...