Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(27): 3673-3676, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456471

RESUMO

The solution processed FAPbI3 perovskite usually suffers from chaotic orientations. Herein, a template structure of oriented 2D perovskite is used to obtain a high-quality FAPbI3 film with (001) preferred orientation by cation exchange. The highly oriented BA2PbI4 serves as a growth template and promotes the (001) orientation of the 3D perovskite. The dominantly (001) orientated FAPbI3 perovskite exhibits uniform surface morphology and suppressed film defects.

2.
Chem Commun (Camb) ; 60(21): 2938-2941, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372697

RESUMO

Realizing efficient FAPbI3-based devices with high open-circuit voltage (VOC) is still challenging, due to severe energy loss between the n-type perovskite and p-type hole-transporting layer (HTL). Here, we developed a strategy involving controlling the formation of iodine vacancies in order to induce formation of p-type perovskite and hence mitigate such energy loss. Post-deposition of n-butylamine iodide was discovered to induce an n-to-p-type transition in the FAPbI3 perovskite and hence form the p-type perovskite/p-type HTL junction. The resultant device realized a VOC of as high as 1.12 V, a value ∼14.3% higher than that of the corresponding n-type FAPbI3 device (0.98 V).

3.
ACS Nano ; 18(1): 1172-1180, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38146712

RESUMO

Vanadium oxides are excellent cathode materials with large storage capacities for aqueous zinc-ion batteries, but their further development has been hampered by their low electronic conductivity and slow Zn2+ diffusion. Here, an electrochemically induced phase transformation strategy is proposed to mitigate and overcome these barriers. In situ X-ray diffraction analysis confirms the complete transformation of tunnel-like structural V6O13 into layered V5O12·6H2O during the initial electrochemical charging process. Theoretical calculations reveal that the phase transformation is crucial to reducing the Zn2+ migration energy barrier and facilitating fast charge storage kinetics. The calculated band structures indicate that the bandgap of V5O12·6H2O (0.0006 eV) is lower than that of V6O13 (0.5010 eV), which enhanced the excitation of charge carriers to the conduction band, favoring electron transfer in redox reactions. As a result, the transformed V5O12·6H2O delivers a high capacity of 609 mA h g-1 at 0.1 A g-1, superior rate performance (300 mA h g-1 at 20 A g-1), fast-charging capability (<7 min charging for 465 mA h g-1), and excellent cycling stability with a reversible capacity of 346 mA h g-1 at 5 A g-1 after 5000 cycles.

4.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838581

RESUMO

Several strategies and approaches have been reported for improving the resilience and optoelectronic properties of perovskite films. However, fabricating a desirable and stable perovskite absorber layer is still a great challenge due to the optoelectronic and fabrication limitations of the materials. Here, we introduce diethylammonium bromide (DABr) as a post-treatment material for the pre-deposited methylammonium lead iodide (MAPbI3) film to fabricate a high-quality two-dimensional/three-dimensional (2D/3D) stacked hetero-structure perovskite film. The post-treatment method of DABr not only induces the small crystals of MAPbI3 perovskite secondary growth into a large crystal, but also forms a 2D capping layer on the surface of the 3D MAPbI3 film. Meanwhile, the grains and crystallization of 3D film with DABr post-treatment are significantly improved, and the surface defect density is remarkably reduced, which in turn effectively suppressed the charge recombination in the interface between the perovskite layer and the charge transport layer. The perovskite solar cell based on the DABr-treatment exhibited a significantly enhanced power conversion efficiency (PCE) of 19.10% with a notable improvement in the open circuit voltage (VOC) of 1.06 V and good stability, advocating the potential of this perovskite post-treatment approach.


Assuntos
Brometos , Compostos de Cálcio , Óxidos , Recombinação Genética
5.
ACS Nano ; 17(4): 3765-3775, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36752806

RESUMO

The reversibility and cyclability of aqueous zinc-ion batteries (ZIBs) are largely determined by the stabilization of the Zn anode. Therefore, a stable anode/electrolyte interface capable of inhibiting dendrites and side reactions is crucial for high-performing ZIBs. In this study, we investigated the adsorption of 1,4-dioxane (DX) to promote the exposure of Zn (002) facets and prevent dendrite growth. DX appears to reside at the interface and suppress the detrimental side reactions. ZIBs with the addition of DX demonstrated a long-term cycling stability of 1000 h in harsh conditions of 10 mA cm-2 with an ultrahigh cumulative plated capacity of 5 Ah cm-2 and shows a good reversibility with an average Coulombic efficiency of 99.7%. The Zn//NH4V4O10 full battery with DX achieves a high specific capacity (202 mAh g-1 at 5 A g-1) and capacity retention (90.6% after 5000 cycles), much better than that of ZIBs with the pristine ZnSO4 electrolyte. By selectively adjusting the Zn2+ deposition rate on the crystal facets with adsorbed molecules, this work provides a promising modulation strategy at the molecular level for high-performing Zn anodes and can potentially be applied to other metal anodes suffering from instability and irreversibility.

6.
ACS Appl Mater Interfaces ; 12(31): 35105-35112, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32662270

RESUMO

The composition and crystallization process are essential for high-quality perovskite films. Cesium (Cs) and methylammonium chlorine (MACl) were found to affect the crystallization kinetics of perovskite, and the performance and stability of corresponding devices were greatly improved. We adopted an ion exchange method to remove MACl vapor and add Cs to form a multiple-cation-based perovskite film. With the increase of annealing time, Cl- from cesium chloride (CsCl) and MA from methylammonium bromide (MABr) formed gradually MACl vapor, and the porosity of surface morphology improved accordingly. The highly crystallized and compact CsyMAx - yFA1 - xPbI3 - xBrx perovskite film with different compositions was eventually obtained. The effects of the amount of MABr on the property of perovskite films and on the performance of the corresponding perovskite solar cells (PerSCs) were systematically studied. The PerSCs derived from 12 mg of MABr exhibit the best photovoltaic performance with a power conversion efficiency of 21.57% under 1 sun illumination.

7.
ACS Nano ; 14(5): 5581-5589, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32392033

RESUMO

The aqueous zinc ion battery has emerged as a promising alternative technology for large-scale energy storage due to its low cost, natural abundance, and high safety features. However, the sluggish kinetics stemming from the strong electrostatic interaction of divalent zinc ions in the host crystal structure is one of challenges for highly efficient energy storage. Oxygen vacancies (VO••), in the present work, lead to a larger tunnel structure along the b axis, which improves the reactive kinetics and enhances Zn-ion storage capability in VO2 (B) cathode. DFT calculations further support that VO•• in VO2 (B) result in a narrower bandgap and lower Zn ion diffusion energy barrier compared to those of pristine VO2 (B). VO••-rich VO2 (B) achieves a specific capacity of 375 mAh g-1 at a current density of 100 mA g-1 and long-term cyclic stability with retained specific capacity of 175 mAh g-1 at 5 A g-1 over 2000 cycles (85% capacity retention), higher than that of VO2 (B) nanobelts (280 mAh g-1 at 100 mA g-1 and 120 mAh g-1 at 5 A g-1, 65% capacity retention).

8.
Adv Sci (Weinh) ; 6(21): 1901591, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31728291

RESUMO

Formamidinium (FA) lead halide (α-FAPbI3) perovskites are promising materials for photovoltaic applications because of their excellent light harvesting capability (absorption edge 840 nm) and long carrier diffusion length. However, it is extremely difficult to prepare a pure α-FAPbI3 phase because of its easy transformation into a nondesirable δ-FAPbI3 phase. In the present study, a "perovskite" template (MAPbI3-FAI-PbI2-DMSO) structure is used to avoid and suppress the formation of δ-FAPbI3 phases. The perovskite structure is formed via postdeposition involving the treatment of colloidal MAI-PbI2-DMSO film with FAI before annealing. In situ X-ray diffraction in vacuum shows no detectable δ-FAPbI3 phase during the whole synthesis process when the sample is annealed from 100 to 180 °C. This method is found to reduce defects at grain boundaries and enhance the film quality as determined by means of photoluminescence mapping and Kelvin probe force microscopy. The perovskite solar cells (PSCs) fabricated by this method demonstrate a much-enhanced short-circuit current density ( J sc) of 24.99 mA cm-2 and a power conversion efficiency (PCE) of 21.24%, which is the highest efficiency reported for pure FAPbI3, with great stability under 800 h of thermal ageing and 500 h of light soaking in nitrogen.

9.
ACS Appl Mater Interfaces ; 11(18): 16704-16712, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912434

RESUMO

Currently, in the field of photovoltaics, researchers are working hard to produce efficient, stable, and commercially feasible devices. The prime objective behind the innovation of any photovoltaic device is to yield more energy with easy manufacture and less process cost. Perovskite solar cells (PSCs) are prominent in the field of photovoltaics, owing to its low material cost, simple fabrication process, and ideal optoelectronic properties. Despite rapid augmentation in progress of PSCs, it is still a bottleneck to produce a high-quality perovskite layer at low temperatures in a short time. Herein, a facile solvent engineering technique is used to produce a high-quality perovskite layer at 50 °C in just 30 min. We employed solvent coordination strength to form the intermediate state as well as their sensitive behavior against antisolvent to establish a trade-off between fast and retarded crystallization. Dimethylsulphoxide (DMSO), a traditional co-solvent is used as an additive instead of co-solvent; in contrast, mixed 1-methyl-2-pyrrolidinone (NMP) and dimethylacetamide are employed as principal solvents for perovskite precursors. Different volume ratios of DMSO as a fraction of NMP are added to examine the evolution of the perovskite layer at low temperatures. It is noted that the mixed solvent with 30% DMSO shows a pin-hole free, uniform, and compact layer with a strong absorption spectrum. Promisingly, the corresponding device with 30% DMSO shows a high efficiency of 18.19%, which is even comparable to traditionally high-temperature annealed PSCs. These findings may provide a way to produce low-temperature annealed, high-quality perovskite films and subsequently facilitate the production of cost-effective and efficient devices.

10.
ACS Appl Mater Interfaces ; 10(4): 3602-3608, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29313326

RESUMO

The synthesis and growth of CH3NH3PbI3 films with controlled nucleation is a key issue for the high efficiency and stability of solar cells. Here, 4-tert-butylpyridine (tBP) was introduced into a CH3NH3PbI3 antisolvent to obtain high quality perovskite layers. In situ optical microscopy and X-ray diffraction patterns were used to prove that tBP significantly suppressed perovskite nucleation by forming an intermediate phase. In addition, a gradient perovskite structure was obtained by this method, which greatly improved the efficiency and stability of perovskites. An effective power conversion efficiency (PCE) of 17.41% was achieved via the tBP treatment, and the high-efficiency device could maintain over 89% of the initial PCE after 30 days at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...