Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792800

RESUMO

There are significant variations in pathogenicity among different virulent strains of the Newcastle disease virus (NDV). Virulent NDV typically induces severe pathological changes and high mortality rates in infected birds, while avirulent NDV usually results in asymptomatic infection. Currently, the understanding of the specific mechanisms underlying the differences in host pathological responses and symptoms caused by various virulent NDV strains remains limited. Long non-coding RNA (lncRNA) can participate in a range of biological processes and plays a crucial role in viral infection and replication. Therefore, this study employed RNA-Seq to investigate the transcriptional profiles of chicken embryos' visceral tissues (CEVTs) infected with either the virulent NA-1 strain or avirulent LaSota strain at 24 hpi and 36 hpi. Using bioinformatic methods, we obtained a total of 2532 lncRNAs, of which there were 52 and 85 differentially expressed lncRNAs at 24 hpi and 36 hpi, respectively. LncRNA analysis revealed that the severe pathological changes and symptoms induced by virulent NDV infection may be partially attributed to related target genes, regulated by differentially expressed lncRNAs such as MSTRG.1545.5, MSTRG.14601.6, MSTRG.7150.1, and MSTRG.4481.1. Taken together, these findings suggest that virulent NDV infection exploits the host's metabolic resources and exerts an influence on the host's metabolic processes, accompanied by excessive activation of the immune response. This impacts the growth and development of each system of CEVTs, breaches the blood-brain barrier, inflicts severe damage on the nervous system, and induces significant lesions. These observations may be attributed to variations in pathology. Consequently, novel insights were obtained into the intricate regulatory mechanisms governing NDV and host interactions. This will aid in unraveling the molecular mechanisms underlying both virulent and avirulent forms of NDV infection.

2.
Viruses ; 14(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35632651

RESUMO

The highly virulent Newcastle disease virus (NDV) isolates typically result in severe systemic pathological changes and high mortality in Newcastle disease (ND) illness, whereas avirulent or low-virulence NDV strains can cause subclinical disease with no morbidity and even asymptomatic infections in birds. However, understanding the host's innate immune responses to infection with either a highly virulent strain or an avirulent strain, and how this response may contribute to severe pathological damages and even mortality upon infection with the highly virulent strain, remain limited. Therefore, the differences in epigenetic and pathogenesis mechanisms between the highly virulent and avirulent strains were explored, by transcriptional profiling of chicken embryonic visceral tissues (CEVT), infected with either the highly virulent NA-1 strain or the avirulent vaccine LaSota strain using RNA-seq. In our current paper, severe systemic pathological changes and high mortality were only observed in chicken embryos infected with the highly virulent NA-1 strains, although the propagation of viruses exhibited no differences between NA-1 and LaSota. Furthermore, virulent NA-1 infection caused intense innate immune responses and severe metabolic disorders in chicken EVT at 36 h post-infection (hpi), instead of 24 hpi, based on the bioinformatics analysis results for the differentially expressed genes (DEGs) between NA-1 and LaSota groups. Notably, an acute hyperinflammatory response, characterized by upregulated inflammatory cytokines, an uncontrolled host immune defense with dysregulated innate immune response-related signaling pathways, as well as severe metabolic disorders with the reorganization of host-cell metabolism were involved in the host defense response to the CEVT infected with the highly virulent NA-1 strain compared to the avirulent vaccine LaSota strain. Taken together, these results indicate that not only the host's uncontrolled immune response itself, but also the metabolic disorders with viruses hijacking host cell metabolism, may contribute to the pathogenesis of the highly virulent strain in ovo.


Assuntos
Doenças Metabólicas , Vírus não Classificados , Animais , Embrião de Galinha , Galinhas , Biologia Computacional , Vírus de DNA , Imunidade Inata , Vírus da Doença de Newcastle/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...