Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Haematol ; : 1-9, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744253

RESUMO

INTRODUCTION: Major histocompatibility complex II (MHC-II)-mediated antigen presentation contributes to the pathogenesis of immune thrombocytopenia (ITP). Human leukocyte antigen (HLA)-DRB5 is an MHC-II molecule and this study aims to investigate its role and mechanisms in ITP development. METHODS: Guinea pig anti-mouse platelet (PLT) serum-induced ITP mice received tail vein injection of HLA-DRB5 overexpressing adenoviral vector/immune receptor expressed on myeloid cells-1 (IREM-1) monoclonal antibody (mAb). PLT count changes in mice blood were assessed by a hematology analyzer. MHC-II/CD80/CD86 expression in mice blood was measured by quantitative real-time-PCR and immunofluorescence assay. CD8+ T-cell proportion in mice blood was detected by flow cytometry. RESULTS: HLA-DRB5 overexpression exacerbated PLT reduction since the 5th day of the establishment of ITP mice model and enhanced MHC-II/CD80/CD86 expression upregulation as well as CD8+ T-cell ratio elevation in the blood of ITP mice, while its effects were reversed by IREM-1 mAb. CONCLUSION: HLA-DRB5 overexpression upregulates MHC-II-mediated antigen presentation to CD8+ T cells, thus lowering PLT count in the ITP mice model.

2.
J Chromatogr A ; 1714: 464543, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38065027

RESUMO

Exosomes, also known as small extracellular vesicles, are widely present in a variety of body fluids (e.g., blood, urine, and saliva). Exosomes are becoming an alternative promising source of diagnostic markers for disease rich in cargo of metabolites, proteins, and nucleic acids. However, due to the low abundance and structure similarity with protein complex, the efficient isolation of exosomes is one of the most important issues for biomedical applications. With a higher order of f-orbitals in rare earth element, it will have strong adsorption toward the phosphate group on the surface of the phospholipid bilayer of exosomes. In this study, we systematically investigated the ability of various rare earths interacting with phosphate-containing molecules and plasma exosomes. One of the best binding europium was selected and used to synthesize core-shell magnetic nanomaterials (Fe3O4@SiO2@Eu2O3) for the enrichment of exosomes from human plasma. The developed nanomaterials exhibited higher enrichment capacity, less time consumption and more convenient handling compared to commonly used ultracentrifugation method. The nanomaterials were applied to separate exosomes from the plasma of patients with hepatocellular carcinoma and healthy controls for metabolomics study with high-resolution mass spectrometry, where 70 differentially expressed metabolites were identified, involving amino acid and lipid metabolic pathway. We anticipated the rare earth-based materials to be an alternative approach on exosome isolation for disease diagnosis or postoperative clinical monitoring.


Assuntos
Exossomos , Nanocompostos , Humanos , Exossomos/química , Exossomos/metabolismo , Dióxido de Silício , Fosfatos/análise , Fenômenos Magnéticos
3.
Anal Chim Acta ; 1219: 340034, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715134

RESUMO

Phosphorylation is one of the most important post-translational modifications of proteins, but due to the low abundance of phosphopeptides, enrichment is an essential step before mass spectrometric analysis. Although there are a number of enrichment methods developed targeting different forms of proteins phosphorylations, there are few reports on specific recognition and capture of single phosphopeptide. Herein, based on the advantages of dual affinity of TiO2 and urea to a phosphate group and molecular imprinting towards the peptide sequence, the precise recognition of intact phosphorylated peptides was successfully achieved. The same peptide sequence with different phosphorylation forms (c.a. Ser, Thr and Tyr) were used as templates for proof-of-principle study, and the imprinted particles were successfully synthesized, characterized, and have the capacity to specifically recognize the targeted unique phosphorylation excluding even its isoforms. In addition, the produced molecularly imprinted nanoparticles have numerous important advantages, including strong affinity, high specificity toward single phosphopeptides, tolerance to interferences, fast binding kinetics, substantial binding capacity, excellent stability and reusability, making them an ideal sorbent for specific enrichment of unique phosphopeptides. Finally, different phosphorylation forms were specifically enriched from both standard peptides' mixture and casein/milk digests.


Assuntos
Impressão Molecular , Nanopartículas , Espectrometria de Massas , Nanopartículas/química , Fosfopeptídeos/análise , Fosforilação , Isoformas de Proteínas/metabolismo , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...