Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Agric Environ Med ; 31(2): 160-169, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940098

RESUMO

INTRODUCTION AND OBJECTIVE: As globalization and modernization continue to impact people's lives, a significant shift in lifestyle has taken place, resulting in a worldwide decrease in physical activity and an increase in unhealthy eating patterns. Physical inactivity has become the fourth leading cause of death globally. The aim of this scoping review is to analyze the concept and development of integrating physical activity into healthcare (IPAHc), based on the principles of sports and exercise medicine (SEM) and exercise is medicine (EIM). REVIEW METHODS: A systematic search was conducted of relevant published studies with full text using PubMed, Scopus, Web of Science, Academic Search Ultimate, Medline, and SPORTDiscus, via the EBSCO search platform. BRIEF DESCRIPTION OF THE STATE OF KNOWLEDGE: Twenty-nine studies met the inclusion criteria. The integration pathway centres around physical activity consultation and/or referral, and information technology which has been extensively utilized in IPAHc, including websites, electronic medical records, social media, wearable devices, mobile software, and referral tools. SEM and EIM face numerous implementation challenges, such as time constraints, education/training, resources, and tools. SUMMARY: The concept of IPAHc involves the integration of Physical Activity Vital Signs (PAVS) into electronic medical records to evaluate the physical activity levels of the general population. This can assist individuals in achieving fitness goals, preventing diseases, treating existing illnesses, and undergoing rehabilitation. IPAHc has been in development for many years and is now being explored in practice. Despite the widespread use of information technology in this integration process, a number of challenges still need addressing.


Assuntos
Exercício Físico , Humanos , Atenção à Saúde
2.
Plant Sci ; 346: 112151, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848768

RESUMO

Endosperm, the major storage organ in cereal grains, determines the grain yield and quality. Mitochondria provide the energy for dry matter accumulation, in the endosperm development. Although mitochondrial single-stranded DNA-binding proteins (mtSSBs) play a canonical role in the maintenance of single-stranded mitochondrial DNA, their molecular functions in RNA processing and endosperm development remain obscure. Here, we report a defective rice endosperm mutant, floury endosperm26 (flo26), which develops abnormal starch grains in the endosperm. Map-based cloning and complementation experiments showed that FLO26 allele encodes a mitochondrial single-stranded DNA-binding protein, named as mtSSB1.1. Loss of function of mtSSB1.1 affects the transcriptional level of many mitochondrially-encoded genes and RNA splicing of nad1, a core component of respiratory chain complex I in mitochondria. As a result, dysfunctional mature nad1 led to dramatically decreased complex I activity, thereby reducing ATP production. Our results reveal that mtSSB1.1 plays an important role in the maintenance of mitochondrial function and endosperm development by stabilizing the splicing of mitochondrial RNA in rice.

3.
Mol Plant ; 17(6): 900-919, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704640

RESUMO

Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in the control of spikelet development remains unclear. In this study, we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures. Interestingly, we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7. We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs, thereby promoting the ubiquitination of OsJAZ1 by the SCFOsCOI1a/OsCOI1b complex and degradation via the 26S proteasome. This process ultimately releases OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins become more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Collectively, our study establishes a direct molecular link between arginine methylation and JA signaling in rice.


Assuntos
Arginina , Ciclopentanos , Oryza , Oxilipinas , Proteínas de Plantas , Proteína-Arginina N-Metiltransferases , Transdução de Sinais , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Arginina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Metilação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Regulação da Expressão Gênica de Plantas
4.
New Phytol ; 242(6): 2635-2651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634187

RESUMO

Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , Mutação , Oryza , Proteínas de Plantas , Amido , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Endosperma/metabolismo , Endosperma/crescimento & desenvolvimento , Amido/metabolismo , Amido/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutação/genética , Ligação Proteica , Plastídeos/metabolismo , Teste de Complementação Genética , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Termotolerância , Fatores de Transcrição
5.
New Phytol ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558017

RESUMO

The regulatory mechanisms of anthocyanin biosynthesis have been well documented at the transcriptional and translational levels. By contrast, how anthocyanin biosynthesis is epigenetically regulated remains largely unknown. In this study, we employed genetic, molecular biology, and chromatin immunoprecipitation-quantitative polymerase chain reaction assays to identify a regulatory module essential for repressing the expression of genes involved in anthocyanin biosynthesis through chromatin remodeling. We found that SILENCING DEFECTIVE 2 (SDE2), which was previously identified as a negative regulator for sucrose-induced anthocyanin accumulation in Arabidopsis, is cleaved into N-terminal SDE2-UBL and C-terminal SDE2-C fragments at the first diglycine motif, and the cleaved SDE2-C, which can fully complement the sde2 mutant, is localized in the nucleus and physically interacts with LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) in vitro and in vivo. Genetic analyses showed that both SDE2 and LHP1 act as negative factors for anthocyanin biosynthesis. Consistently, immunoblot analysis revealed that the level of LHP1-bound histone H3 lysine 27 trimethylation (H3K27me3) significantly decreases in sde2 and lhp1 mutants, compared to wild-type (WT). In addition, we found that sugar can induce expression of SDE2 and LHP1, and enhance the level of the nucleus-localized SDE2-C. Taken together, our data suggest that the SDE2-C-LHP1 module is required for repression of gene expression through H3K27me3 modification during sugar-induced anthocyanin biosynthesis in Arabidopsis thaliana.

6.
Environ Pollut ; 348: 123828, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522604

RESUMO

Glyphosate (GLY) is a widely used herbicide that has been revealed to inhibit testosterone synthesis in humans and animals. Melatonin (MET) is an endogenous hormone that has been demonstrated to promote mammalian testosterone synthesis via protecting mitochondrial function. However, it remains unclear whether MET targets mitochondria to alleviate GLY-inhibited testosterone synthesis in avian. In this study, an avian model using 7-day-old rooster upon chronic exposure to GLY with the treatment of MET was designed to clarify this issue. Data first showed that GLY-induced testicular Leydig cell damage, structural damage of the seminiferous tubule, and sperm quality decrease were mitigated by MET. Transcriptomic analyses of the testicular tissues revealed the potentially critical role of mitophagy and steroid hormone biosynthesis in the process of MET counteracting GLY-induced testicular damage. Also, validation data demonstrated that the inhibition of testosterone synthesis due to GLY-induced mitochondrial dynamic imbalance and concomitant Parkin-dependent mitophagy activation is alleviated by MET. Moreover, GLY-induced oxidative stress in serum and testicular tissue were significantly reversed by MET. In summary, these findings demonstrate that MET effectively ameliorates GLY-inhibited testosterone synthesis by inhibiting mitophagy activation, which provides a promising remedy for the application of MET as a potential therapeutic agent to antagonize reproductive toxicity induced by GLY and similar contaminants.


Assuntos
Glifosato , Melatonina , Humanos , Masculino , Animais , Testosterona , Melatonina/farmacologia , Galinhas , Sêmen , Mitocôndrias , Mamíferos
7.
Materials (Basel) ; 17(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38399110

RESUMO

Corrugated damage to bearings is a common fault in electrical facilities such as new energy vehicles, wind power, and high-speed railways. The aim of this article is to reveal the microscopic characteristics and formation mechanism of such damages. The corrugation with alternating "light" and "dark" shape was produced on GCr15 bearing races in the experimental conditions. Compared to the light area, the dark area (in the images generated by optical microscope) has more severe electrical erosion, lower hardness, more concave morphology, and lower oxidation. As the voltage increases, the width of the corrugation, the height difference between corrugation, and surface roughness all increase. It is believed that the formation of corrugated damage requires a sufficiently high voltage to induce the periodic destruction and reconstruction of the lubrication film. When the bearing is in a metal-lubrication film-metal contact state, the high voltage causes the lubrication film to break down and induce electrical erosion. Then, the contact area is in metal-metal contact, and the surface is mainly damaged by mechanical rolling. After the reconstruction of lubrication film, the next round of electrical erosion begins. The results are helpful for a deeper understanding of the mechanism of bearing erosion in electrical application.

8.
Plant Cell ; 36(5): 1892-1912, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262703

RESUMO

In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Amido , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Endosperma/metabolismo , Endosperma/genética , Amido/metabolismo , Amido/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Amilopectina/metabolismo , Mutação , Plantas Geneticamente Modificadas
9.
Nat Commun ; 14(1): 7528, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980335

RESUMO

Breakdown of reproductive isolation facilitates flow of useful trait genes into crop plants from their wild relatives. Hybrid sterility, a major form of reproductive isolation exists between cultivated rice (Oryza sativa) and wild rice (O. meridionalis, Mer). Here, we report the cloning of qHMS1, a quantitative trait locus controlling hybrid male sterility between these two species. Like qHMS7, another locus we cloned previously, qHMS1 encodes a toxin-antidote system, but differs in the encoded proteins, their evolutionary origin, and action time point during pollen development. In plants heterozygous at qHMS1, ~ 50% of pollens carrying qHMS1-D (an allele from cultivated rice) are selectively killed. In plants heterozygous at both qHMS1 and qHMS7, ~ 75% pollens without co-presence of qHMS1-Mer and qHMS7-D are selectively killed, indicating that the antidotes function in a toxin-dependent manner. Our results indicate that different toxin-antidote systems provide stacked reproductive isolation for maintaining species identity and shed light on breakdown of hybrid male sterility.


Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Hibridização Genética , Cruzamentos Genéticos , Oryza/genética , Antídotos , Mapeamento Cromossômico , Isolamento Reprodutivo , Infertilidade das Plantas/genética
10.
Plant Cell ; 35(12): 4325-4346, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738653

RESUMO

CYP78A, a cytochrome P450 subfamily that includes rice (Oryza sativa L.) BIG GRAIN2 (BG2, CYP78A13) and Arabidopsis thaliana KLUH (KLU, CYP78A5), generate an unknown mobile growth signal (referred to as a CYP78A-derived signal) that increases grain (seed) size. However, the mechanism by which the CYP78A pathway increases grain size remains elusive. Here, we characterized a rice small grain mutant, small grain4 (smg4), with smaller grains than its wild type due to restricted cell expansion and cell proliferation in spikelet hulls. SMG4 encodes a multidrug and toxic compound extrusion (MATE) transporter. Loss of function of SMG4 causes smaller grains while overexpressing SMG4 results in larger grains. SMG4 is mainly localized to endoplasmic reticulum (ER) exit sites (ERESs) and partially localized to the ER and Golgi. Biochemically, SMG4 interacts with coat protein complex Ⅱ (COPⅡ) components (Sar1, Sec23, and Sec24) and CYP78As (BG2, GRAIN LENGTH 3.2 [GL3.2], and BG2-LIKE 1 [BG2L1]). Genetically, SMG4 acts, at least in part, in a common pathway with Sar1 and CYP78As to regulate grain size. In summary, our findings reveal a CYP78As-SMG4-COPⅡ regulatory pathway for grain size in rice, thus providing new insights into the molecular and genetic regulatory mechanism of grain size.


Assuntos
Arabidopsis , Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Sementes/genética , Arabidopsis/genética
12.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37499659

RESUMO

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Assuntos
Tecnologia de Impulso Genético , Oryza , Hibridização Genética , Oryza/genética , Melhoramento Vegetal/métodos , Isolamento Reprodutivo , Infertilidade das Plantas
13.
Plant Cell ; 35(8): 2871-2886, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37195873

RESUMO

Plants have evolved sophisticated mechanisms to coordinate their growth and stress responses via integrating various phytohormone signaling pathways. However, the precise molecular mechanisms orchestrating integration of the phytohormone signaling pathways remain largely obscure. In this study, we found that the rice (Oryza sativa) short internodes1 (shi1) mutant exhibits typical auxin-deficient root development and gravitropic response, brassinosteroid (BR)-deficient plant architecture and grain size as well as enhanced abscisic acid (ABA)-mediated drought tolerance. Additionally, we found that the shi1 mutant is also hyposensitive to auxin and BR treatment but hypersensitive to ABA. Further, we showed that OsSHI1 promotes the biosynthesis of auxin and BR by activating the expression of OsYUCCAs and D11, meanwhile dampens ABA signaling by inducing the expression of OsNAC2, which encodes a repressor of ABA signaling. Furthermore, we demonstrated that 3 classes of transcription factors, AUXIN RESPONSE FACTOR 19 (OsARF19), LEAF AND TILLER ANGLE INCREASED CONTROLLER (LIC), and OsZIP26 and OsZIP86, directly bind to the promoter of OsSHI1 and regulate its expression in response to auxin, BR, and ABA, respectively. Collectively, our results unravel an OsSHI1-centered transcriptional regulatory hub that orchestrates the integration and self-feedback regulation of multiple phytohormone signaling pathways to coordinate plant growth and stress adaptation.


Assuntos
Oryza , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Brassinosteroides/metabolismo , Hormônios , Crescimento e Desenvolvimento , Regulação da Expressão Gênica de Plantas
14.
J Integr Plant Biol ; 65(7): 1687-1702, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36897026

RESUMO

Pentatricopeptide repeat (PPR) proteins function in post-transcriptional regulation of organellar gene expression. Although several PPR proteins are known to function in chloroplast development in rice (Oryza sativa), the detailed molecular functions of many PPR proteins remain unclear. Here, we characterized a rice young leaf white stripe (ylws) mutant, which has defective chloroplast development during early seedling growth. Map-based cloning revealed that YLWS encodes a novel P-type chloroplast-targeted PPR protein with 11 PPR motifs. Further expression analyses showed that many nuclear- and plastid-encoded genes in the ylws mutant were significantly changed at the RNA and protein levels. The ylws mutant was impaired in chloroplast ribosome biogenesis and chloroplast development under low-temperature conditions. The ylws mutation causes defects in the splicing of atpF, ndhA, rpl2, and rps12, and editing of ndhA, ndhB, and rps14 transcripts. YLWS directly binds to specific sites in the atpF, ndhA, and rpl2 pre-mRNAs. Our results suggest that YLWS participates in chloroplast RNA group II intron splicing and plays an important role in chloroplast development during early leaf development.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Plastídeos/metabolismo , RNA de Cloroplastos/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/genética
15.
J Integr Plant Biol ; 65(6): 1408-1422, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36702785

RESUMO

The endosomal sorting complex required for transport (ESCRT) is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes. Although ESCRT components affect a variety of plant growth and development processes, their impact on leaf development is rarely reported. Here, we found that OsSNF7.2, an ESCRT-III component, controls leaf rolling in rice (Oryza sativa). The Ossnf7.2 mutant rolled leaf 17 (rl17) has adaxially rolled leaves due to the decreased number and size of the bulliform cells. OsSNF7.2 is expressed ubiquitously in all tissues, and its protein is localized in the endosomal compartments. OsSNF7.2 homologs, including OsSNF7, OsSNF7.3, and OsSNF7.4, can physically interact with OsSNF7.2, but their single mutation did not result in leaf rolling. Other ESCRT complex subunits, namely OsVPS20, OsVPS24, and OsBRO1, also interact with OsSNF7.2. Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation. Both Osyuc8 and rl17 Osyuc8 showed rolled leaves, indicating that OsYUC8 and OsSNF7.2 function in the same pathway, conferring leaf development. This study reveals a new biological function for the ESCRT-III components, and provides new insights into the molecular mechanisms underlying leaf rolling.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Oryza , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Endossomos/metabolismo , Folhas de Planta/metabolismo , Transporte Proteico/genética
16.
Plant Commun ; 4(1): 100411, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35836377

RESUMO

Plastid-to-nucleus retrograde signaling coordinates nuclear gene expression with chloroplast developmental status and is essential for the photoautotrophic lifestyle of plants. Previous studies have established that tetrapyrrole biosynthesis (TPB) and plastid gene expression (PGE) play essential roles in plastid retrograde signaling during early chloroplast biogenesis; however, their functional relationship remains unknown. In this study, we generated a series of rice TPB-related gun (genome uncoupled) mutants and systematically analyzed their effects on nuclear and plastid gene expression under normal conditions or when subjected to treatments with norflurazon (NF; a noncompetitive inhibitor of carotenoid biosynthesis) and/or lincomycin (Lin; a specific inhibitor of plastid translation). We show that under NF treatment, expression of plastid-encoded polymerase (PEP)-transcribed genes is significantly reduced in the wild type but is derepressed in the TPB-related gun mutants. We further demonstrate that the derepressed expression of PEP-transcribed genes may be caused by increased expression of the PEP core subunit and nuclear-encoded sigma factors and by elevated copy numbers of plastid genome per haploid genome. In addition, we show that expression of photosynthesis-associated nuclear genes (PhANGs) and PEP-transcribed genes is correlated in the rice TPB-related gun mutants, with or without NF or Lin treatment. A similar correlation between PhANGs and PGE is also observed in the Arabidopsis gun4 and gun5 mutants. Moreover, we show that increased expression of PEP-transcribed plastid genes is necessary for the gun phenotype in NF-treated TPB-related gun mutants. Further, we provide evidence that these TPB-related GUN genes act upstream of GUN1 in the regulation of retrograde signaling. Taken together, our results suggest that the TPB-related GUN genes control retrograde plastid signaling by regulating the PGE-dependent retrograde signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plastídeos/genética , Arabidopsis/metabolismo , Transdução de Sinais/genética , Tetrapirróis/metabolismo , Expressão Gênica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Ligação a DNA/genética
17.
Plant Mol Biol ; 111(3): 291-307, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36469200

RESUMO

KEY MESSAGE: We identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm. Higher plants accumlate large amounts of seed storage proteins (SSPs). However, mechanisms underlying SSP trafficking are largely unknown, especially the ER-Golgi anterograde process. Here, we showed that a rice glutelin precursor accumulation13 (gpa13) mutant exhibited floury endosperm and overaccumulated glutelin precursors, which phenocopied the reported RNAi-Sar1abc line. Molecular cloning revealed that the gpa13 allele encodes a mutated Sar1c (mSar1c) with a deletion of two conserved amino acids Pro134 and Try135. Knockdown or knockout of Sar1c alone caused no obvious phenotype, while overexpression of mSar1c resulted in seedling lethality similar to the gpa13 mutant. Transient expression experiment in tobacco combined with subcellular fractionation experiment in gpa13 demonstrated that the expression of mSar1c affects the subcellular distribution of all Sar1 isoforms and Sec23c. In addition, mSar1c failed to interact with COPII component Sec23. Conversely, mSar1c competed with Sar1a/b/d to interact with guanine nucleotide exchange factor Sec12. Together, we identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm.


Assuntos
Oryza , Proteínas de Armazenamento de Sementes , Proteínas de Armazenamento de Sementes/metabolismo , Oryza/genética , Transporte Proteico/genética , Glutens/genética , Retículo Endoplasmático/metabolismo
18.
Plant Physiol ; 191(3): 1857-1870, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36493391

RESUMO

There is a close regulatory relationship between the circadian clock and the abscisic acid (ABA) signaling pathway in regulating many developmental processes and stress responses. However, the exact feedback regulation mechanism between them is still poorly understood. Here, we identified the rice (Oryza sativa) clock component PSEUDO-RESPONSE REGULATOR 95 (OsPRR95) as a transcriptional regulator that accelerates seed germination and seedling growth by inhibiting ABA signaling. We also found that OsPRR95 binds to the ABA receptor gene REGULATORY COMPONENTS OF ABA RECEPTORS10 (OsRCAR10) DNA and inhibits its expression. Genetic analysis showed OsRCAR10 acts downstream of OsPRR95 in mediating ABA responses. In addition, the induction of OsPRR95 by ABA partly required a functional OsRCAR10, and the ABA-responsive element-binding factor ABSCISIC ACID INSENSITIVE5 (OsABI5) bound directly to the promoter of OsPRR95 and activated its expression, thus establishing a regulatory feedback loop between OsPRR95, OsRCAR10, and OsABI5. Taken together, our results demonstrated that the OsRCAR10-OsABI5-OsPRR95 feedback loop modulates ABA signaling to fine-tune seed germination and seedling growth, thus establishing the molecular link between ABA signaling and the circadian clock.


Assuntos
Arabidopsis , Relógios Circadianos , Oryza , Ácido Abscísico/metabolismo , Oryza/metabolismo , Relógios Circadianos/genética , Arabidopsis/genética , Germinação/fisiologia , Plântula/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Science ; 378(6624): 1074-1079, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36480632

RESUMO

The uplift of the Tibet Plateau (TP) during the Miocene is crucial to understanding the evolution of Asian monsoon regimes and alpine biodiversity. However, the northern Tibet Plateau (NTP) remains poorly investigated. We use pollen records of montane conifers (Tsuga, Podocarpus, Abies, and Picea) as a new paleoaltimetry to construct two parallel midrange paleoelevation sequences in the NTP at 1332 ± 189 m and 433 ± 189 m, respectively, during the Middle Miocene [~15 million years ago (Ma)]. Both midranges increased rapidly to 3685 ± 87 m in the Late Miocene (~11 Ma) in the east, and to 3589 ± 62 m at ~7 Ma in the west. Our estimated rises in the east and west parts of the NTP during 15 to 7 Ma, together with data from other TP regions, indicate that during the Late Miocene the entire plateau may have reached a high elevation close to that of today, with consequent impacts on atmospheric precipitation and alpine biodiversity.


Assuntos
Biodiversidade , Evolução Biológica , Fenômenos Geológicos , Traqueófitas , Tibet , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...