Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(9): 8210-8218, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910925

RESUMO

Defining the metric for synthesizability and predicting new compounds that can be experimentally realized in the realm of data-driven research is a pressing problem in contemporary materials science. The increasing computational power and advancements in machine learning (ML) algorithms provide a new avenue to solve the synthesizability challenge. In this work, using the Inorganic Crystal Structure Database (ICSD) and the Materials Project (MP) database, we represent crystal structures in Fourier-transformed crystal properties (FTCP) representation and use a deep learning model to predict synthesizability in the form of a synthesizability score (SC). Such an SC model, as a synthesizability filter for new materials, enables an efficient and accurate classification to identify promising material candidates. The SC prediction model achieved 82.6/80.6% (precision/recall) overall accuracy in predicting ternary crystal materials. We also trained the SC model by only considering compounds uploaded on the MP before 2015 as the training set and testing on multiple sets of materials uploaded after 2015. In the post-2019 test set, we obtain a high 88.60% true positive rate accuracy, coupled with 9.81% precision, indicating that newly added materials remain unexplored and have high synthesis potential. Further, we provide a list of 100 materials predicted to be synthesizable from this post-2019 dataset (highest SC) for future studies, and our SC model, as a validation filter, is beneficial for future material screening and discovery.

2.
J Am Chem Soc ; 143(45): 18917-18931, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34739239

RESUMO

New antibiotics are needed to battle growing antibiotic resistance, but the development process from hit, to lead, and ultimately to a useful drug takes decades. Although progress in molecular property prediction using machine-learning methods has opened up new pathways for aiding the antibiotics development process, many existing solutions rely on large data sets and finding structural similarities to existing antibiotics. Challenges remain in modeling unconventional antibiotic classes that are drawing increasing research attention. In response, we developed an antimicrobial activity prediction model for conjugated oligoelectrolyte molecules, a new class of antibiotics that lacks extensive prior structure-activity relationship studies. Our approach enables us to predict the minimum inhibitory concentration for E. coli K12, with 21 molecular descriptors selected by recursive elimination from a set of 5305 descriptors. This predictive model achieves an R2 of 0.65 with no prior knowledge of the underlying mechanism. We find the molecular representation optimum for the domain is the key to good predictions of antimicrobial activity. In the case of conjugated oligoelectrolytes, a representation reflecting the three-dimensional shape of the molecules is most critical. Although it is demonstrated with a specific example of conjugated oligoelectrolytes, our proposed approach for creating the predictive model can be readily adapted to other novel antibiotic candidate domains.

3.
Opt Express ; 23(7): A382-90, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968803

RESUMO

Si based tandem solar cells represent an alternative to traditional compound III-V multijunction cells as a promising way to achieve high efficiencies. A theoretical study on the energy yield of GaAs on Si (GaAs/Si) tandem solar cells is performed to assess their energy yield potential under realistic illumination conditions with varying spectrum. We find that the yield of a 4-terminal contact scheme with thick top cell is more than 15% higher than for a 2-terminal scheme. Furthermore, we quantify the main losses that occur for this type of solar cell under varying spectra. Apart from current mismatch, we find that a significant power loss can be attributed to low irradiance seen by the sub-cells. The study shows that despite non-optimal bandgap combination, GaAs/Si tandem solar cells have the potential to surpass 30% energy conversion efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...