Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci Biotechnol ; 13(1): 90, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962456

RESUMO

BACKGROUND: Deoxynivalenol (DON) is one of the most common environmental pollutants that induces intestinal inflammation and microbiota dysbiosis. Lactobacillus rhamnosus GG (LGG) is a probiotic that not only has anti-inflammatory effects, but also shows protective effect on the intestinal barrier. However, it is still unknown whether LGG exerts beneficial effects against DON-induced intestinal damage in piglets. In this work, a total of 36 weaned piglets were randomized to one of four treatment groups for 21 d. The treatment groups were CON (basal diet); LGG (basal diet supplemented with 1.77 × 1011 CFU/kg LGG); DON (DON-contaminated diet) and LGG + DON (DON-contaminated diet supplemented with 1.77 × 1011 CFU/kg LGG). RESULT: Supplementation of LGG can enhance growth performance of piglets exposed to DON by improving intestinal barrier function. LGG has a mitigating effect on intestinal inflammation induced by DON exposure, largely through repression of the TLR4/NF-κB signaling pathway. Furthermore, supplementation of LGG increased the relative abundances of beneficial bacteria (e.g., Collinsella, Lactobacillus, Ruminococcus_torques_group and Anaerofustis), and decreased the relative abundances of harmful bacteria (e.g., Parabacteroides and Ruminiclostridium_6), and also promoted the production of SCFAs. CONCLUSIONS: LGG ameliorates DON-induced intestinal damage, which may provide theoretical support for the application of LGG to alleviate the adverse effects induced by DON exposure.

2.
Front Vet Sci ; 9: 904667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711808

RESUMO

A fruit juice production byproduct, Aronia melanocarpa pomace (AMP) is rich in natural polyphenol antioxidant components. The objectives of this study were to study the effects of dietary AMP supplementation on the feeding outcome and intestinal barrier function of pigs. In total, 27 growing pigs (Duroc × Landrace × Yorkshire, ~60 days, average weight of 27.77 ± 2.87 kg, males and females included at random) were randomly allotted to 3 treatment groups, with 3 repetitions per group and 3 pigs per repetition. At the experiment completion, 2 pigs (close to the average body weight of all experimental pigs) per replicate were slaughtered. The control group (CON group) was fed a basic diet, and the experimental groups were fed 4% (4% AMP group) and 8% (8% AMP group) AMP in the basic diet. These pigs were prefed for 3 days, and the formal experiments were performed for 7 weeks. The results showed that compared with the CON diet, the 4% AMP supplementation significantly increased the average daily gain of pigs (P < 0.05). Regarding intestinal development, 4% AMP significantly increased the jejunal villus height/crypt depth ratio (P < 0.05), and different AMP levels had no significant effect on the pig cecum morphology. Different AMP levels significantly decreased the relative abundance of Proteobacteria (P < 0.05). Regarding other microbial genera, 4% AMP supplementation significantly increased the levels of Lachnospira, Solobacterium, Romboutsia and other beneficial microorganisms (P < 0.05). Different AMP levels significantly decreased the relative abundances of the opportunistic pathogens Escherichia-Shigella and Pseudoscardovia (P < 0.05) and increased the contents of acetic acid and butyric acid in the pig cecal contents (P < 0.05). Compared with the CON treatment, 4% AMP supplementation significantly downregulated the jejunal gene expression of porcine proinflammatory factors (IL-1ß, IL-6, IL-8 and TNF-α) and significantly upregulated the jejunal gene expression of ZO-1, Occludin and Claudin-1 (P < 0.05). In conclusion, 4% AMP supplementation in feed is beneficial to overall pig health and growth.

3.
Ecotoxicol Environ Saf ; 241: 113811, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35772362

RESUMO

Deoxynivalenol (DON) is one of the mycotoxins that contaminate cereals and feed, thereby endangering human and animal health. Dihydroartemisinin (DHA), a derivative of artemisinin, has anti-inflammatory and antioxidant functions in addition to anti-malaria and anti-cancer. The purpose of this study was to investigate the effects of DHA on alleviating liver apoptosis and inflammation induced by DON in piglets. The experimental design followed a 2 (normal diet and DON-contaminated diet) × 2 (with and without supplementation of DHA) factorial arrangement. 36 weaned piglets were subjected to a 21-day experiment. Results showed that DON increased ALT activity, the levels of TNF-α, IL-1ß and IL-2, and reduced the levels of total protein (TP) and albumin (ALB) in the serum. However, DHA decreased the levels of TNF-α, IL-1ß and IL-2, and increased the levels of TP and ALB. Also, DON decreased glutathione (GSH) content and catalase (CAT) activity, and increased methane dicarboxylic aldehyde (MDA) content. But GSH content was increased by DHA. In addition, DHA decreased DON-induced increase in apoptosis rate of hepatocytes. Furthermore, DON activated death receptor pathway to promote apoptosis by up-regulating the protein expression of FasL and caspase-3, and the mRNA expression of FasL, TNFR1, caspase-8, Bid, Bax, CYC and caspase-3. However, DHA reduced caspase-3 protein expression, as well as the mRNA expression of FADD, Bid, Bax, CYC and caspase-3. Besides, DON also activated TNF/NF-κB pathway to induce an inflammatory response by up-regulating TNF-α protein expression, and the mRNA expression of TNFR1, RIP1, IKKß, IκBα, IL-1ß and IL-8. Nevertheless, DHA reduced the mRNA expression of RIP1, IκBα, NF-κB, IL-1ß and IL-6, and the protein expression of TNF-α and NF-κB. In conclusion, DHA improved DON-induced negative effects on serum biochemical parameters and inflammatory cytokine levels, hepatic antioxidant capacity, hepatic apoptosis and inflammation.


Assuntos
Artemisininas , NF-kappa B , Animais , Antioxidantes/metabolismo , Apoptose , Artemisininas/toxicidade , Caspase 3/genética , Caspase 3/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-2/metabolismo , Fígado , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Suínos , Tricotecenos , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
4.
Food Funct ; 13(7): 3905-3916, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35285834

RESUMO

Deoxynivalenol (DON) is a common mycotoxin that pollutes food crops and adversely affects the health of animals, even humans. Lactobacillus rhamnosus GG (LGG) can alleviate intestinal injury, and anti-inflammatory and antioxidant effects. However, the potential of LGG in alleviating kidney injury induced by DON in piglets remains to be studied. The objective of this study was to investigate the adverse effect of DON on kidney injury and the protective ability of LGG. A total of twenty-seven weaned piglets were divided into three groups: CON group, DON group (3.11 mg kg-1 feed) and LGG + DON group (LGG powder 1 g kg-1 + DON 3.15 mg kg-1 feed). DON increased the MDA content, and decreased antioxidant enzyme activity (GSH-Px) and total antioxidant capacity (P < 0.05). Meanwhile, DON activated the Nrf2 antioxidant pathway. However, LGG supplementation alleviated the damage of DON to the kidney antioxidant system of piglets. Notably, DON significantly reduced the Sirt3 expression (P < 0.05), which was alleviated by LGG addition. The expression of mitochondrial biogenesis related factors such as VDAC1 and Cyt C was up-regulated by DON (P < 0.05), and LGG could improve mitochondrial ultrastructural abnormalities and mitochondrial dysfunction. In addition, LGG mitigated DON-induced mitochondrial fusion inhibition, and prevented DON-mediated mitochondrial autophagy. In conclusion, LGG play a protective role in DON-induced kidney toxicity, and dietary intervention may be a strategy to reduce mycotoxins.


Assuntos
Lacticaseibacillus rhamnosus , Animais , Rim , Mitocôndrias , Estresse Oxidativo , Suínos , Tricotecenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...