Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(18): E1924-32, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753613

RESUMO

Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.


Assuntos
Células-Tronco Adultas/fisiologia , Androgênios/fisiologia , Desenvolvimento Fetal/fisiologia , Células Intersticiais do Testículo/fisiologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Callithrix , Linhagem da Célula/fisiologia , Dibutilftalato/toxicidade , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Células-Tronco Fetais/efeitos dos fármacos , Células-Tronco Fetais/fisiologia , Humanos , Técnicas In Vitro , Células Intersticiais do Testículo/efeitos dos fármacos , Hormônio Luteinizante/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Gravidez , Ratos , Ratos Transgênicos , Ratos Wistar , Receptores Androgênicos/deficiência , Receptores Androgênicos/genética , Receptores Androgênicos/fisiologia , Regeneração , Testículo/embriologia , Testículo/fisiologia , Testosterona/deficiência , Testosterona/fisiologia
2.
Adv Exp Med Biol ; 636: 1-15, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19856159

RESUMO

Spermatogenesis is a complex biological process of cellular transformation that produces male haploid germ cells from diploid spermatogonial stem cells. This process has been simplified morphologically by recognizing cellular associations or 'stages' and 'phases' of spermatogenesis, which progress through precisely timed and highly organized cycles. These cycles of spermatogenesis are essential for continuous sperm production, which is dependent upon numerous factors, both intrinsic (Sertoli and germ cells) and extrinsic (androgens, retinoic acids), as well as being species-specific.


Assuntos
Epitélio Seminífero/crescimento & desenvolvimento , Espermatogênese/fisiologia , Animais , Humanos , Estágios do Ciclo de Vida , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...