Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 340: 199307, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160910

RESUMO

Ostreid herpes virus 1 (OsHV-1) has been classified within the Malacoherpesviridae family from the Herpesvirales order. OsHV-1 is the etiological agent of a contagious viral disease of Pacific oysters, C. gigas, affecting also other bivalve species. Mortality rates reported associated with the viral infection vary considerably between sites and countries and depend on the age of affected stocks. A variant called µVar has been reported since 2008 in Europe and other variants in Australia and in New Zealand last decade. These variants are considered as the main causative agents of mass mortality events affecting C. gigas. Presently there is no established cell line that allows for the detection of infectious OsHV-1. In this context, a technique of propidium monoazide (PMA) PCR was developed in order to quantify "undamaged" capsids. This methodology is of interest to explore the virus infectivity. Being able to quantify viral particles getting an undamaged capsid (not only an amount of viral DNA) in tissue homogenates prepared from infected oysters or in seawater samples can assist in the definition of a Lethal Dose (LD) 50 and gain information in the experiments conducted to reproduce the viral infection. The main objectives of the present study were (i) the development/optimization of a PMA PCR technique for OsHV-1 detection using the best quantity of PMA and verifying its effectiveness through heat treatment, (ii) the definition of the percentage of undamaged capsids in four different tissue homogenates prepared from infected Pacific oysters and (iii) the approach of a LD50 during experimental viral infection assays on the basis of a number of undamaged capsids. Although the developped PMA PCR technique was unable to determine OsHV-1 infectivity in viral supensions, it could greatly improve interpretation of virus positive results obtained by qPCR. This technique is not intended to replace the quantification of viral DNA by qPCR, but it does make it possible to give a form of biological meaning to the detection of this DNA.


Assuntos
Azidas , Crassostrea , Herpesviridae , Propídio/análogos & derivados , Viroses , Animais , Herpesviridae/genética , DNA Viral/genética , Capsídeo , Dose Letal Mediana , Crassostrea/genética , Reação em Cadeia da Polimerase
2.
Front Cell Infect Microbiol ; 12: 858311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444958

RESUMO

Mortality outbreaks of young Pacific oysters, Crassostrea gigas, have seriously affected the oyster-farming economy in several countries around the world. Although the causes of these mortality outbreaks appear complex, a viral agent has been identified as the main factor: a herpesvirus called ostreid herpesvirus 1 (OsHV-1). Autophagy is an important degradation pathway involved in the response to several pathologies including viral diseases. In C. gigas, recent studies indicate that this pathway is conserved and functional in at least haemocytes and the mantle. Furthermore, an experimental infection in combination with compounds known to inhibit or induce autophagy in mammals revealed that autophagy is involved in the response to OsHV-1 infection. In light of these results, the aim of this study was to determine the role of autophagy in the response of the Pacific oyster to infection by virus OsHV-1. For this purpose, an experimental infection in combination with a modulator of autophagy was performed on Pacific oysters known to have intermediate susceptibility to OsHV-1 infection. In haemolymph and the mantle, the autophagy response was monitored by flow cytometry, western blotting, and real-time PCR. At the same time, viral infection was evaluated by quantifying viral DNA and RNA amounts by real-time PCR. Although the results showed activation of autophagy in haemolymph and the mantle 14 hours post infection (after viral replication was initiated), they were also indicative of different regulatory mechanisms of autophagy in the two tissues, thus supporting an important function of autophagy in the response to virus OsHV-1.


Assuntos
Crassostrea , Herpesviridae , Viroses , Animais , Autofagia , Crassostrea/genética , Crassostrea/metabolismo , Vírus de DNA , DNA Viral/análise , Mamíferos/genética
3.
Front Microbiol ; 12: 711377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326830

RESUMO

The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. This is particularly true for pathogens with low per-site mutation rates, such as DNA viruses, that do not exhibit a large amount of evolutionary change among genetic sequences sampled at different time points. However, whole-genome sequencing can reveal the accumulation of novel genetic variation between samples, promising to render most, if not all, microbial pathogens measurably evolving and suitable for analytical techniques derived from population genetic theory. Here, we aim to assess the measurability of evolution on epidemiological time scales of the Ostreid herpesvirus 1 (OsHV-1), a double stranded DNA virus of which a new variant, OsHV-1 µVar, emerged in France in 2008, spreading across Europe and causing dramatic economic and ecological damage. We performed phylogenetic analyses of heterochronous (n = 21) OsHV-1 genomes sampled worldwide. Results show sufficient temporal signal in the viral sequences to proceed with phylogenetic molecular clock analyses and they indicate that the genetic diversity seen in these OsHV-1 isolates has arisen within the past three decades. OsHV-1 samples from France and New Zealand did not cluster together suggesting a spatial structuration of the viral populations. The genome-wide study of simple and complex polymorphisms shows that specific genomic regions are deleted in several isolates or accumulate a high number of substitutions. These contrasting and non-random patterns of polymorphism suggest that some genomic regions are affected by strong selective pressures. Interestingly, we also found variant genotypes within all infected individuals. Altogether, these results provide baseline evidence that whole genome sequencing could be used to study population dynamic processes of OsHV-1, and more broadly herpesviruses.

4.
Vet Clin Pathol ; 49(2): 345-353, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32342550

RESUMO

BACKGROUND: The Quality Assurance and Laboratory Standards Committee of the American Society for Veterinary Clinical Pathology and the guidelines of the Clinical and Laboratory Standards Institute provide a framework for establishing reference intervals of physiological parameters in reputedly healthy individuals, humans, and terrestrial animals, respectively. This framework was applied for the first time to the Pacific cupped oyster, Crassostrea gigas. Reference intervals (RIs) would, first, be of interest for research purposes, including pathophysiology studies. RI determination is the first step before considering the use of RIs for field applications by farmers and marine shellfish health services. OBJECTIVES: The purpose of this study was to propose reference intervals of feeding and respiration parameters, the clearance rate (CR), and oxygen consumption rate (OCR), in a reference population of hatchery-reared diploid Pacific oysters. METHODS: A de novo, a priori, and a direct approach were applied. The reference values acquired from 214 healthy diploid C gigas (total wet weight 6.23-83.64 g, DW 0.06-1.87 g) were analyzed using a non-parametric statistical method. RESULTS: Reference intervals were proposed for CR, 0.7-4.1 L/h/g dry flesh weight (DW), and OCR, 0.4-1.3 mg O2/h/g DW in C gigas in a seawater at a temperature of 22℃ and a salinity of 32‰. Animals were fed 30-40 cells/µL of Isochrysis affinis galbana. The confidence intervals at 90% of the upper limits of the two parameters were found to be higher than those of the Clinical and Laboratory Standards Institute (CLSI) recommendations. CONCLUSIONS: Obtaining reference intervals is an important step and must be completed by proposed decision limits to facilitate the early detection of health disorders in C gigas.


Assuntos
Crassostrea/fisiologia , Frutos do Mar , Animais , Crassostrea/genética , Feminino , Masculino , Valores de Referência
5.
Autophagy ; 16(11): 2017-2035, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31965890

RESUMO

The Pacific oyster, Crassostrea gigas, is a mollusk bivalve commercially important as a food source. Pacific oysters are subjected to stress and diseases during culture. The autophagy pathway is involved in numerous cellular processes, including responses to starvation, cell death, and microorganism elimination. Autophagy also exists in C. gigas, and plays a role in the immune response against infections. Although this process is well-documented and conserved in most animals, it is still poorly understood in mollusks. To date, no study has provided a complete overview of the molecular mechanism of autophagy in mollusk bivalves. In this study, human and yeast ATG protein sequences and public databases (Uniprot and NCBI) were used to identify protein members of the C. gigas autophagy pathway. A total of 35 autophagy related proteins were found in the Pacific oyster. RACE-PCR was performed on several genes. Using molecular (real-time PCR) and protein-based (western blot and immunohistochemistry) approaches, the expression and localization of ATG12, ATG9, BECN1, MAP1LC3, MTOR, and SQSTM1, was investigated in different tissues of the Pacific oyster. Comparison with human and yeast counterparts demonstrated a high homology with the human autophagy pathway. The results also demonstrated that the key autophagy genes and their protein products were expressed in all the analyzed tissues of C. gigas. This study allows the characterization of the complete C. gigas autophagy pathway for the first time. Abbreviations: ATG: autophagy related; Atg1/ULK: unc-51 like autophagy activating kinase; ATG7: autophagy related 7; ATG9: autophagy related 9; ATG12: autophagy related 12; BECN1: beclin 1; BSA: bovine serum albumin; cDNA: complementary deoxyribonucleic acid; DNA: deoxyribonucleic acid; GABARAP: GABA type A receptor-associated protein; IHC: immunohistochemistry; MAP1LC3/LC3/Atg8: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NCBI: national center for biotechnology information; ORF: open reading frame; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PtdIns3K: class III phosphatidylinositol 3-kinase; RACE-PCR: rapid amplification of cDNA-ends by polymerase chain reaction; RNA: ribonucleic acid; SQSTM1: sequestosome 1; Uniprot: universal protein resource; WIPI: WD repeat domain, phosphoinositide interacting.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Crassostrea/imunologia , Humanos , Ligação Proteica/fisiologia , Leveduras
6.
Front Immunol ; 11: 621994, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537036

RESUMO

Massive mortality outbreaks affecting Pacific oysters (Crassostrea gigas) spat/juveniles are often associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted using two contrasted Pacific oyster families for their susceptibility to viral infection. Live oysters were sampled at 12, 26, and 144 h post infection (hpi) to analyze host-pathogen interactions using comparative proteomics. Shotgun proteomics allowed the detection of seven viral proteins in infected oysters, some of them with potential immunomodulatoy functions. Viral proteins were mainly detected in susceptible oysters sampled at 26 hpi, which correlates with the mortality and viral load observed in this oyster family. Concerning the Pacific oyster proteome, more than 3,000 proteins were identified and contrasted proteomic responses were observed between infected A- and P-oysters, sampled at different post-injection times. Gene ontology (GO) and KEGG pathway enrichment analysis performed on significantly modulated proteins uncover the main immune processes (such as RNA interference, interferon-like pathway, antioxidant defense) which contribute to the defense and resistance of Pacific oysters to viral infection. In the more susceptible Pacific oysters, results suggest that OsHV-1 manipulate the molecular machinery of host immune response, in particular the autophagy system. This immunomodulation may lead to weakening and consecutively triggering death of Pacific oysters. The identification of several highly modulated and defense-related Pacific oyster proteins from the most resistant oysters supports the crucial role played by the innate immune system against OsHV-1 and the viral infection. Our results confirm the implication of proteins involved in an interferon-like pathway for efficient antiviral defenses and suggest that proteins involved in RNA interference process prevent viral replication in C. gigas. Overall, this study shows the interest of multi-omic approaches applied on groups of animals with differing sensitivities and provides novel insight into the interaction between Pacific oyster and OsHV-1 with key proteins involved in viral infection resistance.


Assuntos
Crassostrea , Infecções por Vírus de DNA/imunologia , Vírus de DNA/fisiologia , Proteômica , Replicação Viral/imunologia , Animais , Crassostrea/imunologia , Crassostrea/virologia , Infecções por Vírus de DNA/veterinária , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/virologia
7.
J Invertebr Pathol ; 166: 107222, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356818

RESUMO

Ostreid herpesvirus 1 (OsHV-1) is a DNA virus of the genus Ostreavirus (Malacoherpesviridae family, Herpesvirales order). Worldwide, OsHV-1 and its microvariants have been associated with increased mortality of Pacific oysters, Crassostrea gigas. Adult asymptomatic oysters also have shown a high prevalence of viral infection. As a consequence, surveillance is needed to better describe OsHV-1 diversity, pathogenicity, clinical signs, and geographical distribution. We examined Crassostrea gigas sampled in October 2017 from the inner zone of the Bahía Blanca Estuary, Argentina, and found that 8 of 30 specimens (26.7%) presented macroscopic lesions in mantle tissues. Histological analysis revealed abnormal presentation of mantle epithelial cells and connective tissues. Conventional and real-time PCR conducted on the oyster samples revealed 70% to be positive for presence of OsHV-1 DNA. The nucleotide sequence of the amplicon obtained from one sample using the primer pair IA1/IA2 (targeting ORF 42/43) was 99% identical to OsHV-1 reference as well as µVar strains B and A (KY271630, KY242785.1), sequenced from France and Ireland. This finding represents the first detection of OsHV-1 DNA in a wild population of C. gigas in Argentina in association with gross mantle lesions.


Assuntos
Crassostrea/virologia , Vírus de DNA/genética , Frutos do Mar/virologia , Animais , Argentina , DNA Viral/análise , Espécies Introduzidas , Filogenia
8.
Front Microbiol ; 10: 1128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178841

RESUMO

Viral entry mechanisms of herpesviruses constitute a highly complex process which implicates several viral glycoproteins and different receptors on the host cell surfaces. This initial infection stage was currently undescribed for Ostreid herpes virus 1 (OsHV-1), a herpesvirus infecting bivalves including the Pacific oyster, Crassostrea gigas. To identify OsHV-1 glyproteins implicated in the attachment of the virus to oyster cells, three viral putative membrane proteins, encoded by ORF 25, 41, and 72, were selected and polyclonal antibodies against these targets were used to explore first interactions between the virus and host cells. In addition, effects of dextran sulfate, a negative charged sulfated polysaccharide, were investigated on OsHV-1 infection. Effects of antiviral antibodies and dextran sulfate were evaluated by combining viral DNA and RNA detection in spat (in vivo trials) and in oyster hemolymph (in vitro trials). Results showed that viral protein encoded by ORF 25 appeared to be involved in interaction between OsHV-1 and host cells even if other proteins are likely implicated, such as proteins encoded by ORF 72 and ORF 41. Dextran sulfate at 30 µg/mL significantly reduced the spat mortality rate in the experimental conditions. Taken together, these results contribute to better understanding the pathogenesis of the viral infection, especially during the first stage of OsHV-1 infection, and open the way toward new approaches to control OsHV-1 infection in confined facilities.

9.
Autophagy ; 15(10): 1801-1809, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30939979

RESUMO

Macroautophagy is a mechanism that is involved in various cellular processes, including cellular homeostasis and innate immunity. This pathway has been described in organisms ranging in complexity from yeasts to mammals, and recent results indicate that it occurs in the mantle of the Pacific oyster, Crassostrea gigas. However, the autophagy pathway has never been explored in the hemocytes of C. gigas, which are the main effectors of its immune system and thus play a key role in the defence of the Pacific oyster against pathogens. To investigate autophagy in oyster hemocytes, tools currently used to monitor this mechanism in mammals, including flow cytometry, fluorescent microscopy and transmission electron microscopy, were adapted and applied to the hemocytes of the Pacific oyster. Oysters were exposed for 24 and 48 h to either an autophagy inducer (carbamazepine, which increases the production of autophagosomes) or an autophagy inhibitor (ammonium chloride, which prevents the degradation of autophagosomes). Autophagy was monitored in fresh hemocytes withdrawn from the adductor muscles of oysters using a combination of the three aforementioned methods. We successfully labelled autophagosomes and observed them by flow cytometry and fluorescence microscopy, and then used electron microscopy to observe ultrastructural modifications related to autophagy, including the presence of double-membrane-bound vacuoles. Our results demonstrated that autophagy occurs in hemocytes of C. gigas and can be modulated by molecules known to modulate autophagy in other organisms. This study describes an integrated approach that can be applied to investigate autophagy in marine bivalves at the cellular level. Abbreviations: MAP1LC3: microtubule associated protein 1 light chain 3; MCA: multiple correspondence analysis; NH4Cl: ammonium chloride; PI: propidium iodide; TEM: transmission electron microscopy.


Assuntos
Autofagia/fisiologia , Crassostrea , Hemócitos/fisiologia , Animais , Autofagossomos/fisiologia , Autofagossomos/ultraestrutura , Crassostrea/citologia , Crassostrea/metabolismo , Crassostrea/ultraestrutura , Citometria de Fluxo , Hemócitos/citologia , Hemócitos/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência
10.
Sci Rep ; 8(1): 12494, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131502

RESUMO

Bonamia ostreae has been associated with the decline of flat oyster Ostrea edulis populations in some European countries. This obligatory intracellular parasite persists and multiplies into hemocytes. Previous in vitro experiments showed that apoptosis is activated in hemocytes between 1 h and 4 h of contact with the parasite. The flat oyster uses the apoptosis pathway to defend against B. ostreae. However, the parasite might be also able to modulate this response in order to survive in its host. In order to investigate this hypothesis the apoptotic response of the host was evaluated using flow cytometry, transmission electron microscopy and by measuring the response of genes involved in the apoptotic pathway after 4 h. In parallel, the parasite response was investigated by measuring the expression of B. ostreae genes involved in different biological functions including cell cycle and cell death. Obtained results allow describing molecular apoptotic pathways in O. edulis and confirm that apoptosis is early activated in hemocytes after a contact with B. ostreae. Interestingly, at cellular and molecular levels this process appeared downregulated after 44 h of contact. Concurrently, parasite gene expression appeared reduced suggesting that the parasite could inhibit its own metabolism to escape the immune response.


Assuntos
Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Haplosporídios/patogenicidade , Ostrea/parasitologia , Animais , Apoptose , Ciclo Celular , Europa (Continente) , Citometria de Fluxo , Regulação da Expressão Gênica , Haplosporídios/genética , Hemócitos/parasitologia , Interações Hospedeiro-Parasita , Microscopia Eletrônica de Transmissão , Ostrea/genética , Análise de Sequência de RNA/veterinária
11.
Artigo em Inglês | MEDLINE | ID: mdl-29057216

RESUMO

Bonamiosis due to the parasite Bonamia ostreae has been associated with massive mortality outbreaks in European flat oyster stocks in Europe. As eradication and treatment are not possible, the control of the disease mainly relies on transfer restriction. Moreover, selection has been applied to produce resistant flat oyster families, which present better survival and lower prevalence than non-selected oysters. In order to better understand the mechanisms involved in resistance to bonamiosis, cellular and molecular responses of 2 oyster groups (selected oysters and wild-type oysters) were analyzed in the context of experimental injection and cohabitation infections. Cellular responses including non-specific esterases detection, ROS production and phagocytosis activity were analyzed by flow cytometry. Four genes homologous to those shown to be involved in immunity were selected (Inhibitor of apotosis OeIAP, Fas ligand OeFas-ligand, Oe-SOD, and OeEc-SOD) and monitored by quantitative reverse-transcription PCR (qRT-PCR). Infected oysters showed higher phagocytosis activity than controls. Infected selected oyster show a lower phagocytosis activity which might be a protection against the parasite infection. The expression of OeIAP and OeFas-ligand gene was significantly increased in selected oysters at 5 days post-injection. OeIAP gene expression appeared to be significantly increased in wild-type oysters at 8 days post-injection. Our results suggest that resistance to bonamiosis partly relies on the ability of the oysters to modulate apoptosis.


Assuntos
Resistência à Doença/genética , Haplosporídios/genética , Interações Hospedeiro-Parasita , Ostreidae/parasitologia , Infecções por Protozoários/parasitologia , Animais , Apoptose/genética , Expressão Gênica , Haplosporídios/isolamento & purificação , Hemócitos/metabolismo , Fagocitose/genética , Infecções por Protozoários/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
12.
J Invertebr Pathol ; 150: 45-53, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28911815

RESUMO

Since 2008, mass mortality outbreaks associated with the detection of particular variants of OsHV-1 have been reported in Crassostrea gigas spat and juveniles in several countries. Recent studies have reported information on viral replication during experimental infection. Viral DNA and RNA were also detected in the haemolymph and haemocytes suggesting that the virus could circulate through the circulatory system. However, it is unknown if the virus is free in the haemolymph, passively associated at the surface of haemocytes, or able to infect and replicate inside these cells inducing (or not) virion production. In the present study, we collected haemocytes from the haemolymphatic sinus of the adductor muscle of healthy C. gigas spat and exposed them in vitro to a viral suspension. Results showed that viral RNAs were detectable one hour after contact and the number of virus transcripts increased over time in association with an increase of viral DNA detection. These results suggested that the virus is able to initiate replication rapidly inside haemocytes maintained in vitro. These in vitro trials were also used to carry out a dual transcriptomic study. We analyzed concomitantly the expression of some host immune genes and 15 viral genes. Results showed an up regulation of oyster genes currently studied during OsHV-1 infection. Additionally, transmission electron microscopy examination was carried out and did not allow the detection of viral particles. Moreover, All the results suggested that the in vitro model using haemocytes can be valuable for providing new perspective on virus-oyster interactions.


Assuntos
Crassostrea/virologia , Vírus de DNA/fisiologia , Hemócitos/virologia , Interações Hospedeiro-Patógeno , Animais , DNA Viral , Genes Virais , Replicação Viral
13.
J Exp Biol ; 220(Pt 20): 3671-3685, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28798082

RESUMO

Double-stranded RNA (dsRNA)-mediated genetic interference (RNAi) is a widely used reverse genetic tool for determining the loss-of-function phenotype of a gene. Here, the possible induction of an immune response by long dsRNA was tested in a marine bivalve (Crassostrea gigas), as well as the specific role of the subunit 2 of the nuclear factor κB inhibitor (IκB2). This gene is a candidate of particular interest for functional investigations in the context of oyster mass mortality events, as Cg-IκB2 mRNA levels exhibited significant variation depending on the amount of ostreid herpesvirus 1 (OsHV-1) DNA detected. In the present study, dsRNAs targeting Cg-IκB2 and green fluorescent protein genes were injected in vivo into oysters before being challenged by OsHV-1. Survival appeared close to 100% in both dsRNA-injected conditions associated with a low detection of viral DNA and a low expression of a panel of 39 OsHV-1 genes as compared with infected control. Long dsRNA molecules, both Cg-IκB2- and GFP-dsRNA, may have induced an anti-viral state controlling the OsHV-1 replication and precluding the understanding of the specific role of Cg-IκB2 Immune-related genes including Cg-IκB1, Cg-Rel1, Cg-IFI44, Cg-PKR and Cg-IAP appeared activated in the dsRNA-injected condition, potentially hampering viral replication and thus conferring a better resistance to OsHV-1 infection. We revealed that long dsRNA-mediated genetic interference triggered an anti-viral state in the oyster, emphasizing the need for new reverse genetics tools for assessing immune gene function and avoiding off-target effects in bivalves.


Assuntos
Crassostrea/genética , Crassostrea/imunologia , Vírus de DNA/fisiologia , Imunidade Inata , RNA de Cadeia Dupla/genética , Animais , DNA Viral/genética , RNA de Cadeia Dupla/metabolismo
14.
PLoS One ; 12(5): e0177448, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542284

RESUMO

Recent transcriptomic approaches focused on anti-viral immunity in molluscs lead to the assumption that the innate immune system, such as apoptosis, plays a crucial role against ostreid herpesvirus type 1 (OsHV-1), infecting Pacific cupped oyster, Crassostrea gigas. Apoptosis constitutes a major mechanism of anti-viral response by limiting viral spread and eliminating infected cells. In this way, an OsHV-1 challenge was performed and oysters were monitored at three times post injection to investigate viral infection and host response: 2h (early after viral injection in the adductor muscle), 24h (intermediate time), and 48h (just before first oyster mortality record). Virus infection, associated with high cumulative mortality rates (74% and 100%), was demonstrated in haemocytes by combining several detection techniques such as real-time PCR, real-time RT PCR, immunofluorescence assay, and transmission electron microscopy examination. High viral DNA amounts ranged from 5.46×104 to 3.68×105 DNA copies ng-1 of total DNA, were detected in dead oysters and an increase of viral transcripts was observed from 2, 24, and 48hpi for the five targeted OsHV-1 genes encoding three putative membrane proteins (ORFs 25, 41, and 72), a putative dUTPase (ORF 75), and a putative apoptosis inhibitor (ORF 87). Apoptosis was studied at molecular and cellular levels with an early marker (phosphatidyl-serine externalisation measured by flow cytometry and epifluorescence microscopy) and a later parameter (DNA fragmentation by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay (TUNEL)). The down-regulation of genes encoding proteins involved in the activation of the apoptotic pathway (TNF and caspase 3) and the up-regulation of genes encoding anti-apoptotic proteins (IAP-2, and Bcl-2) suggested an important anti-apoptosis phenomenon in haemocytes from OsHV-1 infected oysters at 24 and 48hpi. Additionally, more phosphatidyl-serines were externalized and more cells with DNA fragmentation were observed in haemocytes collected from artificial seawater injected oysters than in haemocytes collected from OsHV-1 infected oysters at 24 and 48hpi, suggesting an inhibition of the apoptotic process in presence of the virus. In conclusion, this study is the first to focus on C. gigas haemocytes, cells involved in the host immune defense, during an OsHV-1 challenge in controlled conditions by combining various and original approaches to investigate apoptosis at molecular and cellular levels.


Assuntos
Apoptose , Células Sanguíneas/citologia , Crassostrea/virologia , DNA Viral/metabolismo , Herpesviridae/fisiologia , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Animais , Células Sanguíneas/virologia , Crassostrea/genética , Fragmentação do DNA , Regulação da Expressão Gênica , Herpesviridae/genética , Herpesviridae/metabolismo , Fosfatidilserinas/metabolismo , Fatores de Tempo
15.
Genet Sel Evol ; 49(1): 23, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28201985

RESUMO

BACKGROUND: In France, two main diseases threaten Pacific oyster production. Since 2008, Crassostrea gigas spat have suffered massive losses due to the ostreid herpesvirus OsHV-1, and since 2012, significant mortalities in commercial-size adults have been related to infection by the bacterium Vibrio aestuarianus. The genetic basis for resistance to V. aestuarianus and OsHV-1 and the nature of the genetic correlation between these two traits were investigated by using 20 half-sib sire families, each containing two full-sib families. For each disease, controlled infectious challenges were conducted using naïve oysters that were 3 to 26 months old. In addition, siblings were tested under field, pond and raceway conditions to determine whether laboratory trials reflected mortality events that occur in the oyster industry. RESULTS: First, we estimated the genetic basis of resistance to V. aestuarianus in C. gigas. Susceptibility to the infection was low for oysters in spat stage but increased with later life stages. Second, we confirmed a strong genetic basis of resistance to OsHV-1 infection at early stages and demonstrated that it was also strong at later stages. Most families had increased resistance to OsHV-1 infection from the spat to adult stages, while others consistently showed low or high mortality rates related to OsHV-1 infection, regardless of the life stage. Our third main finding was the absence of genetic correlations between resistance to OsHV-1 infection and resistance to V. aestuarianus infection. CONCLUSIONS: Selective breeding to enhance resistance to OsHV-1 infection could be achieved through selective breeding at early stages and would not affect resistance to V. aestuarianus infection. However, our results suggest that the potential to select for improved resistance to V. aestuarianus is lower. Selection for dual resistance to OsHV-1 and V. aestuarianus infection in C. gigas might reduce the impact of these two major diseases by selecting families that have the highest breeding values for resistance to both diseases.


Assuntos
Crassostrea/genética , Resistência à Doença/genética , Vibrio/patogenicidade , Animais , Crassostrea/crescimento & desenvolvimento , Crassostrea/imunologia , Crassostrea/microbiologia
16.
J Invertebr Pathol ; 147: 118-135, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28189502

RESUMO

Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.


Assuntos
Moluscos/virologia , Animais , Birnaviridae/isolamento & purificação , Birnaviridae/fisiologia , Variação Genética , Genoma Viral , Herpesviridae/isolamento & purificação , Herpesviridae/fisiologia , Interações Hospedeiro-Patógeno , Água do Mar/virologia
17.
Fish Shellfish Immunol ; 56: 322-329, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27431587

RESUMO

The in vitro model Ostrea edulis hemocyte - Bonamia ostreae is interesting to investigate host-parasite interactions at the cellular level. Indeed, this unicellular parasite infects the flat oyster Ostrea edulis and multiplies within hemocytes, the central effectors of oyster defenses. Apoptosis is a mechanism used by many organisms to eliminate infected cells. In order to study the potential involvement of this mechanism in the oyster response to B. ostreae, in vitro experiments were carried out by exposing hemocytes from the naturally susceptible oyster O. edulis and a resistant oyster species Crassostrea gigas to live and heat-inactivated parasites. Hemocyte apoptotic response was measured using a combination of flow cytometry and microscopy analyses. Whatever the host species was, the parasite was engulfed in hemocytes and induced an increase of apoptotic parameters including intracytoplasmic calcium concentration, mitochondrial membrane potential or phosphatidyl-serine externalization as well as ultrastructural modifications. However, the parasite appears more able to infect flat oyster than cupped oyster hemocytes and the apoptotic response was more important against live than dead parasites in the natural host than in C. gigas. Our results suggest that O. edulis specifically responds to B. ostreae by inducing apoptosis of hemocytes.


Assuntos
Apoptose , Haplosporídios/fisiologia , Interações Hospedeiro-Parasita , Ostrea/fisiologia , Ostrea/parasitologia , Animais , Citometria de Fluxo , Hemócitos/parasitologia , Hemócitos/fisiologia , Hemócitos/ultraestrutura , Microscopia Eletrônica de Transmissão
18.
J Invertebr Pathol ; 136: 124-35, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27066775

RESUMO

Immunohistochemistry (IHC) assays were conducted on paraffin sections from experimentally infected spat and unchallenged spat produced in hatchery to determine the tissue distribution of three viral proteins within the Pacific oyster, Crassostrea gigas. Polyclonal antibodies were produced from recombinant proteins corresponding to two putative membrane proteins and one putative apoptosis inhibitor encoded by ORF 25, 72, and 87, respectively. Results were then compared to those obtained by in situ hybridization performed on the same individuals, and showed a substantial agreement according to Landis and Koch numeric scale. Positive signals were mainly observed in connective tissue of gills, mantle, adductor muscle, heart, digestive gland, labial palps, and gonads of infected spat. Positive signals were also reported in digestive epithelia. However, few positive signals were also observed in healthy appearing oysters (unchallenged spat) and could be due to virus persistence after a primary infection. Cellular localization of staining seemed to be linked to the function of the viral protein targeted. A nucleus staining was preferentially observed with antibodies targeting the putative apoptosis inhibitor protein whereas a cytoplasmic localization was obtained using antibodies recognizing putative membrane proteins. The detection of viral proteins was often associated with histopathological changes previously reported during OsHV-1 infection by histology and transmission electron microscopy. Within the 6h after viral suspension injection, positive signals were almost at the maximal level with the three antibodies and all studied organs appeared infected at 28h post viral injection. Connective tissue appeared to be a privileged site for OsHV-1 replication even if positive signals were observed in the epithelium cells of different organs which may be interpreted as a hypothetical portal of entry or release for the virus. IHC constitutes a suited method for analyzing the early infection stages of OsHV-1 infection and a useful tool to investigate interactions between OsHV-1 and its host at a protein level.


Assuntos
Crassostrea/virologia , Infecções por Herpesviridae , Animais , DNA Viral/análise , Herpesviridae , Imuno-Histoquímica , Hibridização In Situ , Proteínas Virais/análise
19.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26880839

RESUMO

Linking marine epizootics to a specific aetiology is notoriously difficult. Recent diagnostic successes show that marine disease diagnosis requires both modern, cutting-edge technology (e.g. metagenomics, quantitative real-time PCR) and more classic methods (e.g. transect surveys, histopathology and cell culture). Here, we discuss how this combination of traditional and modern approaches is necessary for rapid and accurate identification of marine diseases, and emphasize how sole reliance on any one technology or technique may lead disease investigations astray. We present diagnostic approaches at different scales, from the macro (environment, community, population and organismal scales) to the micro (tissue, organ, cell and genomic scales). We use disease case studies from a broad range of taxa to illustrate diagnostic successes from combining traditional and modern diagnostic methods. Finally, we recognize the need for increased capacity of centralized databases, networks, data repositories and contingency plans for diagnosis and management of marine disease.


Assuntos
Organismos Aquáticos , Conservação dos Recursos Naturais , Animais , Ecossistema , Monitoramento Ambiental/economia , Monitoramento Ambiental/métodos
20.
Sci Rep ; 6: 19906, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26819100

RESUMO

Iridescent color appearances are widespread in nature. They arise from the interaction of light with micron- and submicron-sized physical structures spatially arranged with periodic geometry and are usually associated with bright angle-dependent hues. Iridescence has been reported for many animals and marine organisms. However, iridescence has not been well studied in bacteria. Recently, we reported a brilliant "pointillistic" iridescence in colony biofilms of marine Flavobacteria that exhibit gliding motility. The mechanism of their iridescence is unknown. Here, using a multi-disciplinary approach, we show that the cause of iridescence is a unique periodicity of the cell population in the colony biofilm. Cells are arranged together to form hexagonal photonic crystals. Our model highlights a novel pattern of self-organization in a bacterial biofilm. "Pointillistic" bacterial iridescence can be considered a new light-dependent phenomenon for the field of microbiology.


Assuntos
Biofilmes , Flavobacteriaceae/fisiologia , Iridescência , Cor , Flavobacteriaceae/ultraestrutura , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...