Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 19(2)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38250751

RESUMO

Agricultural tasks and environments range from harsh field conditions with semi-structured produce or animals, through to post-processing tasks in food-processing environments. From farm to fork, the development and application of soft robotics offers a plethora of potential uses. Robust yet compliant interactions between farm produce and machines will enable new capabilities and optimize existing processes. There is also an opportunity to explore how modeling tools used in soft robotics can be applied to improve our representation and understanding of the soft and compliant structures common in agriculture. In this review, we seek to highlight the potential for soft robotics technologies within the food system, and also the unique challenges that must be addressed when developing soft robotics systems for this problem domain. We conclude with an outlook on potential directions for meaningful and sustainable impact, and also how our outlook on both soft robotics and agriculture must evolve in order to achieve the required paradigm shift.


Assuntos
Robótica , Animais , Fazendas , Agricultura
2.
Soft Robot ; 10(3): 467-481, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36251962

RESUMO

Equipping soft robotic grippers with sensing and perception capabilities faces significant challenges due to their high compliance and flexibility, limiting their ability to successfully interact with the environment. In this work, we propose a sensorized soft robotic finger with embedded marker pattern that integrates a high-speed neuromorphic event-based camera to enable finger proprioception and exteroception. A learning-based approach involving a convolutional neural network is developed to process event-based heat maps and achieve specific sensing tasks. The feasibility of the sensing approach for proprioception is demonstrated by showing its ability to predict the two-dimensional deformation of three points located on the finger structure, whereas the exteroception capability is assessed in a slip detection task that can classify slip heat maps at a temporal resolution of 2 ms. Our results show that our proposed approach can enable complete sensorization of the finger for both proprioception and exteroception using a single camera without negatively affecting the finger compliance. Using such sensorized finger in robotic grippers may provide safe, adaptive, and precise grasping for handling a wide category of objects.


Assuntos
Robótica , Dedos , Redes Neurais de Computação , Propriocepção , Força da Mão
3.
Front Robot AI ; 7: 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501262

RESUMO

Modeling of soft robots is typically performed at the static level or at a second-order fully dynamic level. Controllers developed upon these models have several advantages and disadvantages. Static controllers, based on the kinematic relations tend to be the easiest to develop, but by sacrificing accuracy, efficiency and the natural dynamics. Controllers developed using second-order dynamic models tend to be computationally expensive, but allow optimal control. Here we propose that the dynamic model of a soft robot can be reduced to first-order dynamical equation owing to their high damping and low inertial properties, as typically observed in nature, with minimal loss in accuracy. This paper investigates the validity of this assumption and the advantages it provides to the modeling and control of soft robots. Our results demonstrate that this model approximation is a powerful tool for developing closed-loop task-space dynamic controllers for soft robots by simplifying the planning and sensory feedback process with minimal effects on the controller accuracy.

4.
Bioinspir Biomim ; 14(3): 034001, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30947160

RESUMO

The complex motion abilities of the Octopus vulgaris have been an intriguing research topic for biologists and roboticists alike. Various studies have been conducted on the underlying control architectures employed by these high dimensional biological organisms. Researchers have attempted to replicate these architectures on robotic systems. Contrary to previous approaches, this study focuses on a robotic system, which is only morphologically similar to the Octopus vulgaris, and how it would behave under different control policies. This sheds light on the underlying optimality principles that these biological systems employ. Open loop control policies are obtained through a trajectory optimization method on a learned forward dynamic model. The motion patterns emerging from variations in morphology and environment were then derived to study the role of the body and environment. Results show that for the specific case of dynamic reaching with a soft appendage, the invariance in motion profile is a fundamental constraint imposed by the morphology and environment, independent from the controller. This suggests how morphological design can simplify stable control even for highly dimensional nonlinear dynamical systems and can provide insights into design of new soft robotic mechanisms.


Assuntos
Modelos Teóricos , Movimento (Física) , Octopodiformes , Robótica , Animais , Dinâmica não Linear
5.
Bioinspir Biomim ; 12(6): 066003, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28767049

RESUMO

The soft capabilities of biological appendages like the arms of Octopus vulgaris and elephants' trunks have inspired roboticists to develop their robotic equivalents. Although there have been considerable efforts to replicate their morphology and behavior patterns, we are still lagging behind in replicating the dexterity and efficiency of these biological systems. This is mostly due to the lack of development and application of dynamic controllers on these robots which could exploit the morphological properties that a soft-bodied manipulator possesses. The complexity of these high-dimensional nonlinear systems has deterred the application of traditional model-based approaches. This paper provides a machine learning-based approach for the development of dynamic models for a soft robotic manipulator and a trajectory optimization method for predictive control of the manipulator in task space. To the best of our knowledge this is the first demonstration of a learned dynamic model and a derived task space controller for a soft robotic manipulator. The validation of the controller is carried out on an octopus-inspired soft manipulator simulation derived from a piecewise constant strain approximation and then experimentally on a pneumatically actuated soft manipulator. The results indicate that such an approach is promising for developing fast and accurate dynamic models for soft robotic manipulators while being applicable on a wide range of soft manipulators.


Assuntos
Biomimética/métodos , Algoritmos , Animais , Elefantes/anatomia & histologia , Elefantes/fisiologia , Redes Neurais de Computação , Octopodiformes/anatomia & histologia , Octopodiformes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...