Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20127332

RESUMO

ObjectivesWe used viral genomics to deeply analyze the first SARS-CoV-2 infection clusters in the metropolitan region of Hamburg, Germany. Epidemiological analysis and contact tracing together with a thorough investigation of virus variant patterns revealed low and high infection dose transmissions to be involved in transmission events. MethodsInfection control measures were applied to follow up contract tracing. Metagenomic RNA- and SARS-CoV-2 amplicon sequencing was performed from 25 clinical samples for sequence analysis and variant calling. ResultsThe index patient acquired SARS-CoV-2 in Italy and after his return to Hamburg transmitted it to 2 out of 132 contacts. Virus genomics and variant pattern clearly confirms the initial local cluster. We identify frequent single nucleotide polymorphisms at positions 241, 3037, 14408, 23403 and 28881 previously described in Italian sequences and now considered as one major genotype in Europe. While the index patient showed a single nucleotide polymorphism only one variant was transmitted to the recipients. Different to the initial cluster, we observed in household clusters occurring at the time in Hamburg also intra-host viral species transmission events. ConclusionsSARS-CoV-2 variant tracing highlights both, low infection dose transmissions suggestive of fomites as route of infection in the initial cluster and high and low infection dose transmissions in family clusters indicative of fomites and droplets as infection routes. This suggests (1) single viral particle infection can be sufficient to initiate SARS-CoV-2 infection and (2) household/family members are exposed to high virus loads and therefore have a high risk to acquire SARS-CoV-2.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20059733

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and is a severe threat to global health. Patients infected with SARS-CoV-2 show a wide range of symptoms and disease severity, while limited data is available on its immunogenicity. Here, the kinetics of the development of SARS-CoV-2-specific antibody responses in relation to clinical features and dynamics of specific B-cell populations are reported. Immunophenotyping of B cells was performed by flow cytometry with longitudinally collected PBMCs. In parallel, serum samples were analyzed for the presence of SARS-CoV-2-specific IgA, IgG, and IgM antibodies using whole proteome peptide microarrays. Soon after disease onset in a mild case, we observed an increased frequency of plasmablasts concomitantly with a strong SARS-CoV-2-specific IgA response. In contrast, a case with more severe progression showed a delayed, but eventually very strong and broad SARS-CoV-2-specific IgA response. This case study shows that determining SARS-CoV-2-specific antibody epitopes can be valuable to monitor the specificity and magnitude of the early B-cell response, which could guide the development of vaccine candidates. Follow-up studies are required to evaluate whether the kinetics and strength of the SARS-CoV-2-specific IgA response could be potential prognostic markers of viral control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...