Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200174, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34365827

RESUMO

Soils play an important role in mediating chemical weathering reactions and carbon transfer from the land to the ocean. Proposals to increase the contribution of alkalinity to the oceans through 'enhanced weathering' as a means to help prevent climate change are gaining increasing attention. This would augment the existing connection between the biogeochemical function of soils and alkalinity levels in the ocean. The feasibility of enhanced weathering depends on the combined influence of what minerals are added to soils, the formation of secondary minerals in soils and the drainage regime, and the partial pressure of respired CO2 around the dissolving mineral. Increasing the alkalinity levels in the ocean through enhanced weathering could help to ameliorate the effects of ocean acidification in two ways. First, enhanced weathering would slightly elevate the pH of drainage waters, and the receiving coastal waters. The elevated pH would result in an increase in carbonate mineral saturation states, and a partial reversal in the effects of elevated CO2. Second, the increase in alkalinity would help to replenish the ocean's buffering capacity by maintaining the 'Revelle Factor', making the oceans more resilient to further CO2 emissions. However, there is limited research on the downstream and oceanic impacts of enhanced weathering on which to base deployment decisions. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.


Assuntos
Dióxido de Carbono/análise , Carbonatos/análise , Mudança Climática , Água do Mar/química , Solo/química , Conservação dos Recursos Hídricos , Concentração de Íons de Hidrogênio , Oceanos e Mares
2.
Sci Total Environ ; 431: 166-75, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22683756

RESUMO

This paper investigates the potential for engineered urban soils to capture and store atmospheric carbon (C). Calcium (Ca) and magnesium (Mg) bearing waste silicate minerals within the soil environment can capture and store atmospheric C through the process of weathering and secondary carbonate mineral precipitation. Anthropogenic soils, known to contain substantial quantities of Ca and Mg-rich minerals derived from demolition activity (particularly cement and concrete), were systematically sampled at the surface across a 10 ha brownfield site, Science Central, located in the urban centre of Newcastle upon Tyne, U.K. Subsequent analysis yielded average carbonate contents of 21.8±4.7% wt CaCO(3). Isotopic analysis demonstrated δ(18)O values between -9.4‰ and -13.3‰ and δ(13)C values between -7.4‰ and -13.6‰ (relative to Pee Dee Belemnite), suggesting that up to 39.4±8.8% of the carbonate C has been captured from the atmosphere through hydroxylation of dissolved CO(2) in high pH solutions. The remaining carbonate C is derived from lithogenic sources. 37.4 kg of atmospheric CO(2) has already been captured and stored as carbonate per Mg of soil across the site, representing a carbon dioxide (CO(2)) removal rate of 12.5 kg CO(2) Mg(-1) yr(-1). There is the potential for capture and storage of a further 27.3 kg CO(2) Mg(-1) in residual reactive materials, which may be exploited through increased residence time (additional in situ weathering). Overall, the Science Central site has the potential to capture and store a total of 64,800 Mg CO(2) as carbonate minerals. This study illustrates the potential for managing urban soils as tools of C capture and storage, an important ecosystem service, and demonstrates the importance of studying C storage in engineering urban anthropogenic soils.

3.
Sci Total Environ ; 421-422: 253-9, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22349140

RESUMO

A number of emergency pollution management measures were enacted after the accidental release of caustic bauxite processing residue that occurred in Ajka, western Hungary in October, 2010. These centred on acid and gypsum dosing to reduce pH and minimise mobility of oxyanion contaminants mobile at high pH. This study assessed the effectiveness of gypsum dosing on contaminant mobility and carbon sequestration through assessment of red mud and gypsum-affected fluvial sediments via elemental analysis and stable isotope analysis. There was a modest uptake of contaminants (notably As, Cr, and Mn) on secondary carbonate-dominated deposits in reaches subjected to gypsum dosing. C and O stable isotope ratios of carbonate precipitates formed as a result of gypsum dosing were used to quantify the importance of the neutralisation process in sequestering atmospheric carbon dioxide. This process was particularly pronounced at sites most affected by gypsum addition, where up to 36% of carbonate-C appears to be derived from atmospheric in-gassing of CO(2). The site is discussed as a large scale analogue for potential remedial approaches and carbon sequestration technologies that could be applied to red mud slurries and other hyperalkaline wastes. The results of this work have substantial implications for the aluminium production industry in which 3-4% of the direct CO(2) emissions may be offset by carbonate precipitation. Furthermore, carbonation by gypsum addition may be important for contaminant remediation, also providing a physical stabilisation strategy for the numerous historic stockpiles of red mud.


Assuntos
Sulfato de Cálcio/química , Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/análise , Resíduos Perigosos/prevenção & controle , Resíduos Industriais/prevenção & controle , Poluentes Químicos da Água/isolamento & purificação , Indústria Química , Desastres , Recuperação e Remediação Ambiental/estatística & dados numéricos , Resíduos Perigosos/análise , Hungria , Resíduos Industriais/análise , Análise de Componente Principal , Movimentos da Água
4.
Environ Sci Technol ; 45(6): 2035-41, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21332128

RESUMO

Atmospheric carbon dioxide sequestered as carbonates through the accelerated weathering of silicate minerals is proposed as a climate change mitigation technology with the potential to capture billions of tonnes of carbon per year. Although these materials can be mined expressly for carbonation, they are also produced by human activities (cement, iron and steel making, coal combustion, etc.). Despite their potential, there is poor global accounting of silicates produced in this way. This paper presents production estimates (by proxy) of various silicate materials including aggregate and mine waste, cement kiln dust, construction and demolition waste, iron and steel slag, and fuel ash. Approximately 7-17 billion tonnes are produced globally each year with an approximate annual sequestration potential of 190-332 million tonnes C. These estimates provide justification for additional research to accurately quantify the contemporary production of silicate minerals and to determine the location and carbon capture potential of historic material accumulations.


Assuntos
Sequestro de Carbono , Carbono/química , Silicatos/química , Carbono/análise , Conservação dos Recursos Naturais/métodos , Materiais de Construção/análise , Materiais de Construção/estatística & dados numéricos , Política Ambiental , Resíduos Industriais/análise , Resíduos Industriais/estatística & dados numéricos , Silicatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...