Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(6): 1808-1820, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38363157

RESUMO

Functional assessment of endothelium serves as an important indicator of vascular health and is compromised in vascular disorders including hypertension, atherosclerosis, and preeclampsia. Endothelial dysfunction in these cases is linked to dysregulation of the immune system involving both changes to immune cells and increased secretion of inflammatory cytokines. Herein, we utilize a well-established microfluidic device to generate a 3-dimensional vascular microphysiological system (MPS) consisting of a tubular blood vessel lined with human umbilical vein endothelial cells (HUVECs) to evaluate endothelial function measured via endothelial permeability and Ca2+ signaling. We evaluated the effect of a mixture of factors associated with inflammation and cardiovascular disease (TNFα, VEGF-A, IL-6 at 10 ng ml-1 each) on vascular MPS and inferred that inflammatory mediators contribute to endothelial dysfunction by disrupting the endothelial barrier over a 48 hour treatment and by diminishing coordinated Ca2+ activity over a 1 hour treatment. We also evaluated the effect of peripheral blood mononuclear cells (PBMCs) on endothelial permeability and Ca2+ signaling in the HUVEC MPS. HUVECs were co-cultured with PBMCs either directly wherein PBMCs passed through the lumen or indirectly with PBMCs embedded in the supporting collagen hydrogel. We revealed that phytohemagglutinin (PHA)-M activated PBMCs cause endothelial dysfunction in MPS both through increased permeability and decreased coordinated Ca2+ activity compared to non-activated PBMCs. Our MPS has potential applications in modeling cardiovascular disorders and screening for potential treatments using measures of endothelial function.


Assuntos
Mediadores da Inflamação , Leucócitos Mononucleares , Gravidez , Feminino , Humanos , Células Cultivadas , Mediadores da Inflamação/farmacologia , Sistemas Microfisiológicos , Endotélio Vascular , Células Endoteliais da Veia Umbilical Humana
2.
Reprod Sci ; 30(7): 2292-2301, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36717462

RESUMO

Endothelial Ca2+ signaling has important roles to play in maintaining pregnancy associated vasodilation in the utero-placenta. Inflammatory cytokines, often elevated in vascular complications of pregnancy, negatively regulate ATP-stimulated endothelial Ca2+ signaling and associated nitric oxide production. However, the role of direct engagement of immune cells on endothelial Ca2+ signaling and therefore endothelial function is unclear. To model immune-endothelial interactions, herein, we evaluate the effects of peripheral blood mononuclear cells (PBMCs) in short-term interaction with human umbilical vein endothelial cells (HUVECs) on agonist-stimulated Ca2+ signaling in HUVECs. We find that mononuclear cells (10:1 and 25:1 mononuclear: HUVEC) cause decreased ATP-stimulated Ca2+ signaling; worsened by activated mononuclear cells possibly due to increased cytokine secretion. Additionally, monocytes, natural killers, and T-cells cause decrease in ATP-stimulated Ca2+ signaling using THP-1 (monocyte), NKL (natural killer cells), and Jurkat (T-cell) cell lines, respectively. PBMCs with Golgi-restricted protein transport prior to interaction with endothelial cells display rescue in Ca2+ signaling, strongly suggesting that secreted proteins from PBMCs mediate changes in HUVEC Ca2+ signaling. We propose that endothelial cells from normal pregnancy interacting with PBMCs may model preeclamptic endothelial-immune interaction and resultant endothelial dysfunction.


Assuntos
Leucócitos Mononucleares , Transdução de Sinais , Gravidez , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Monócitos/metabolismo , Citocinas/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Mol Cell Endocrinol ; 539: 111466, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610360

RESUMO

Long chain fatty acids, namely omega-3 and omega-6, are essential fatty acids and are necessary for proper pregnancy progression and fetal growth and development. Maternal fatty acid consumption and release of fatty acids from lipid stores provide increased availability of fatty acids for the placenta to transport to the growing fetus. Both omega-3 and omega-6 fatty acids are then utilized for generation of signaling molecules, such as eicosanoids, and for promoting of growth and developmental, most notably in the nervous system. Perturbations in fatty acid concentration and fatty acid signaling have been implicated in three major pregnancy complications - gestational diabetes, preeclampsia, and preterm birth. In this review we discuss the growing literature surrounding the role of fatty acids in normal and pathological pregnancies. Differences in maternal, placental, and fetal fatty acids and molecular regulation of fatty acid signaling and transport are presented. A look into novel fatty acid-based therapies for each of the highlighted disorders are discussed, and may present exciting bench to bedside alternatives to traditional pharmacological intervention.


Assuntos
Diabetes Gestacional/metabolismo , Ácidos Graxos/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Nascimento Prematuro/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Placenta/patologia , Gravidez , Transdução de Sinais
4.
Nitric Oxide ; 96: 1-12, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911124

RESUMO

The three known gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide are involved in key processes throughout pregnancy. Gasotransmitters are known to impact on smooth muscle tone, regulation of immune responses, and oxidative state of cells and their component molecules. Failure of the systems that tightly regulate gasotransmitter production and downstream effects are thought to contribute to common maternal diseases such as preeclampsia and preterm birth. Normal pregnancy-related changes in uterine blood flow depend heavily on gasotransmitter signaling. In preeclampsia, endothelial dysfunction is a major contributor to aberrant gasotransmitter signaling, resulting in hypertension after 20 weeks gestation. Maintenance of pregnancy to term also requires gasotransmitter-mediated uterine quiescence. As the appropriate signals for parturition occur, regulation of gasotransmitter signaling must work in concert with those endocrine signals in order for appropriate labor and delivery timing. Like preeclampsia, preterm birth may have origins in abnormal gasotransmitter signaling. We review the evidence for the involvement of gasotransmitters in preeclampsia and preterm birth, as well as mechanistic and molecular signaling targets.


Assuntos
Monóxido de Carbono/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Complicações na Gravidez/tratamento farmacológico , Animais , Monóxido de Carbono/fisiologia , Monóxido de Carbono/uso terapêutico , Feminino , Gasotransmissores/fisiologia , Gasotransmissores/uso terapêutico , Humanos , Sulfeto de Hidrogênio/uso terapêutico , Óxido Nítrico/fisiologia , Parto/efeitos dos fármacos , Parto/fisiologia , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/fisiopatologia , Gravidez , Complicações na Gravidez/metabolismo , Complicações na Gravidez/fisiopatologia , Nascimento Prematuro/metabolismo , Nascimento Prematuro/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...