Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 93(5): 2109-24, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21881893

RESUMO

Impairment of acetate production in Escherichia coli is crucial for the performance of many biotechnological processes. Aerobic production of acetate (or acetate overflow) results from changes in the expression of central metabolism genes. Acetyl-CoA synthetase scavenges extracellular acetate in glucose-limited cultures. Once converted to acetyl-CoA, it can be catabolized by the tricarboxylic acid cycle or the glyoxylate pathway. In this work, we assessed the significance of these pathways on acetate overflow during glucose excess and limitation. Gene expression, enzyme activities, and metabolic fluxes were studied in E. coli knock-out mutants related to the glyoxylate pathway operon and its regulators. The relevance of post-translational regulation by AceK-mediated phosphorylation of isocitrate dehydrogenase for pathway functionality was underlined. In chemostat cultures performed at increasing dilution rates, acetate overflow occurs when growing over a threshold glucose uptake rate. This threshold was not affected in a glyoxylate-pathway-deficient strain (lacking isocitrate lyase, the first enzyme of the pathway), indicating that it is not relevant for acetate overflow. In carbon-limited chemostat cultures, gluconeogenesis (maeB, sfcA, and pck), the glyoxylate operon and, especially, acetyl-CoA synthetase are upregulated. A mutant in acs (encoding acetyl-CoA synthetase) produced acetate at all dilution rates. This work demonstrates that, in E. coli, acetate production occurs at all dilution rates and that overflow is the result of unbalanced synthesis and scavenging activities. The over-expression of acetyl-CoA synthetase by cAMP-CRP-dependent induction limits this phenomenon in cultures consuming glucose at low rate, ensuring the recycling of the acetyl-CoA and acetyl-phosphate pools, although establishing an energy-dissipating substrate cycle.


Assuntos
Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Escherichia coli/metabolismo , Glioxilatos/metabolismo , Fosfoenolpiruvato/metabolismo , Escherichia coli/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Redes e Vias Metabólicas/genética
2.
Microb Cell Fact ; 8: 54, 2009 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-19852855

RESUMO

BACKGROUND: Acetate metabolism in Escherichia coli plays an important role in the control of the central metabolism and in bioprocess performance. The main problems related to the use of E. coli as cellular factory are i) the deficient utilization of carbon source due to the excretion of acetate during aerobic growth, ii) the inhibition of cellular growth and protein production by acetate and iii) the need for cofactor recycling (namely redox coenzymes and free CoASH) to sustain balanced growth and cellular homeostasis. RESULTS: This work analyzes the effect of mutations in the acetate excretion/assimilation pathways, acetyl-CoA synthethase (acs) and phosphotransacetylase (pta), in E. coli BW25113 grown on glucose or acetate minimal media. Biomass and metabolite production, redox (NADH/NAD+) and energy (ATP) state, enzyme activities and gene expression profiles related to the central metabolism were analyzed. The knock-out of pta led to a more altered phenotype than that of acs. Deletion of pta reduced the ability to grow on acetate as carbon source and strongly affected the expression of several genes related to central metabolic pathways. CONCLUSION: Results showed that pta limits biomass yield in aerobic glucose cultures, due to acetate production (overflow metabolism) and its inefficient use during glucose starvation. Deletion of pta severely impaired growth on acetate minimal medium and under anaerobiosis due to decreased acetyl-coenzyme A synthethase, glyoxylate shunt and gluconeogenic activities, leading to lower growth rate. When acetate is used as carbon source, the joint expression of pta and acs is crucial for growth and substrate assimilation, while pta deletion severely impaired anaerobic growth. Finally, at an adaptive level, pta deficiency makes the strain more sensitive to environmental changes and de-regulates the central metabolism.


Assuntos
Acetatos/metabolismo , Acetilcoenzima A/fisiologia , Escherichia coli/enzimologia , Fosfato Acetiltransferase/fisiologia , Acetilcoenzima A/metabolismo , Biomassa , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/fisiologia , Escherichia coli/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Mutação , NAD/metabolismo , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...