Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(50): 59962-59974, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878765

RESUMO

The zinc/copper hexacyanoferrate (Zn/CuHCF) cell has gained attention as an aqueous rechargeable zinc-ion battery (ZIB) owing to its open framework, excellent rate capability, and high safety. However, both the Zn anode and the CuHCF cathode show unavoidable signs of aging during cycling, though the underlying mechanisms have remained somewhat ambiguous. Here, we present an in-depth study of the CuHCF cathode by employing various X-ray spectroscopic techniques. This allows us to distinguish between structure-related aging effects and charge compensation processes associated with electroactive metal centers upon Zn2+ ion insertion/deinsertion. By combining high-angle annular dark-field-scanning electron transmission microscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy, and elemental analysis, we reconstruct the picture of both the bulk and the surface. First, we identify a set of previously debated X-ray diffraction peaks appearing at early stages of cycling (below 200 cycles) in CuHCF. Our data suggest that these peaks are unrelated to hypothetical ZnxCu1-xHCF phases or to oxidic phases, but are caused by partial intercalation of ZnSO4 into graphitic carbon. We further conclude that Cu is the unstable species during aging, whose dissolution is significant at the surface of the CuHCF particles. This triggers Zn2+ ions to enter newly formed Cu vacancies, in addition to native Fe vacancies already present in the bulk, which causes a reduction of nearby metal sites. This is distinct from the charge compensation process where both the Cu2+/Cu+ and Fe3+/Fe2+ redox couples participate throughout the bulk. By tracking the K-edge fluorescence using operando XAS coupled with cyclic voltammetry, we successfully link the aging effect to the activation of the Fe3+/Fe2+ redox couple as a consequence of Cu dissolution. This explains the progressive increase in the voltage of the charge/discharge plateaus upon repeated cycling. We also find that SO42- anions reversibly insert into CuHCF during charge. Our work clarifies several intriguing structural and redox-mediated aging mechanisms in the CuHCF cathode and pinpoints parameters that correlate with the performance, which will hold importance for the development of future Prussian blue analogue-type cathodes for aqueous rechargeable ZIBs.

2.
RSC Adv ; 10(55): 33490-33498, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35515037

RESUMO

Diatomaceous earth (DE) is a naturally occurring silica source constituted by fossilized remains of diatoms, a type of hard-shelled algae, which exhibits a complex hierarchically nanostructured porous silica network. In this work, we analyze the positive effects of reducing DE SiO2 particles to the sub-micrometer level and implementing an optimized carbon coating treatment to obtain DE SiO2 anodes with superior electrochemical performance for Li-ion batteries. Pristine DE with an average particle size of 17 µm is able to deliver a specific capacity of 575 mA h g-1 after 100 cycles at a constant current of 100 mA g-1, and reducing the particle size to 470 nm enhanced the reversible specific capacity to 740 mA h g-1. Ball-milled DE particles were later subjected to a carbon coating treatment involving the thermal decomposition of a carbohydrate precursor at the surface of the particles. Coated ball-milled silica particles reached stable specific capacities of 840 mA h g-1 after 100 cycles and displayed significantly improved rate capability, with discharge specific capacities increasing from 220 mA h g-1 (uncoated ball-milled SiO2) to 450 mA h g-1 (carbon coated ball-milled SiO2) at 2 A g-1. In order to trigger SiO2 reactivity towards lithium, all samples were subjected to an electrochemical activation procedure prior to electrochemical testing. XRD measurements on the activated electrodes revealed that the initial crystalline silica was completely converted to amorphous phases with short range ordering, therefore evidencing the effective role of the activation procedure.

3.
Inorg Chem ; 55(12): 5924-34, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27258790

RESUMO

Copper hexacyanoferrate, Cu(II)[Fe(III)(CN)6]2/3·nH2O, was synthesized, and varied amounts of K(+) ions were inserted via reduction by K2S2O3 (aq). Ideally, the reaction can be written as Cu(II)[Fe(III)(CN)6]2/3·nH2O + 2x/3K(+) + 2x/3e(-) ↔ K2x/3Cu(II)[Fe(II)xFe(III)1-x(CN)6]2/3·nH2O. Infrared, Raman, and Mössbauer spectroscopy studies show that Fe(III) is continuously reduced to Fe(II) with increasing x, accompanied by a decrease of the a-axis of the cubic Fm3̅m unit cell. Elemental analysis of K by inductively coupled plasma shows that the insertion only begins when a significant fraction, ∼20% of the Fe(III), has already been reduced. Thermogravimetric analysis shows a fast exchange of water with ambient atmosphere and a total weight loss of ∼26 wt % upon heating to 180 °C, above which the structure starts to decompose. The crystal structures of Cu(II)[Fe(III)(CN)6]2/3·nH2O and K2/3Cu[Fe(CN)6]2/3·nH2O were refined using synchrotron X-ray powder diffraction data. In both, one-third of the Fe(CN)6 groups are vacant, and the octahedron around Cu(II) is completed by water molecules. In the two structures, difference Fourier maps reveal three additional zeolitic water sites (8c, 32f, and 48g) in the center of the cavities formed by the -Cu-N-C-Fe- framework. The K-containing compound shows an increased electron density at two of these sites (32f and 48g), indicating them to be the preferred positions for the K(+) ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...