Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Langmuir ; 34(1): 66-72, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29221371

RESUMO

Controlling the molecular organization of organic self-assembled monolayers (SAM) is of utmost importance in nanotechnology, molecular electronics, and surface science. Here we propose two well-differentiated approaches, double printing based on microcontact printing (µ-cp) and molecular backfilling adsorption, to produce complex alkanethiol films. The resulting films on model Au surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. Double printing alkanethiols results in clear coexisting regions where no molecular displacement is observed, highlighting the slow diffusion rates of long alkanethiols and large attractive interaction between long alkyl chains. Exposing a single-print µ-cp Au substrate to an additional alkanethiol solution yields the formation of differently ordered domain boundaries with different thickness and micrometer lateral size. The high order is a result of enhanced molecular mobility and restructuring during solution backfilling. The formed molecular assemblies constitute an excellent testing ground for nanoscale phenomena that strongly depend on the nanoscale geometrical and chemical features of the surface such as designed functionality or corrosion initiation and inhibition.

2.
Faraday Discuss ; 180: 191-204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25920488

RESUMO

The structure and chemistry of thiol or selenol self-assembled organic monolayers have been frequently addressed due to the unique opportunities in functionalization of materials. Such organic films can also act as effective inhibition layers to mitigate oxidation or corrosion. Cu-Au alloy substrates covered by self-assembled monolayers show a different dealloying mechanism compared to bare surfaces. The organic surface layer inhibits dealloying of noble metal alloys by a suppression of surface diffusion at lower potentials but at higher applied potentials dealloying proceeds in localized regions due to passivity breakdown. We present an in situ atomic force microscopy study of a patterned thiol layer applied on Cu-Au alloy surfaces and further explore approaches to change the local composition of the surface layers by exchange of molecules. The pattern for the in situ experiment has been applied by micro-contact printing. This allows the study of corrosion protection with its dependence on different molecule densities at different sites. Low-density thiol areas surrounding the high-density patterns are completely protected and initiation of dealloying proceeds only along the areas with the lowest inhibitor concentration. Dealloying patterns are highly influenced and controlled by molecular thiol to selenol exchange and are also affected by introducing structural defects such as scratches or polishing defects.


Assuntos
Ligas/química , Cobre/química , Corrosão , Ouro/química , Microscopia de Força Atômica
3.
Science ; 341(6144): 372-6, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23888035

RESUMO

Ultrathin passive films effectively prevent the chemical attack of stainless steel grades in corrosive environments; their stability depends on the interplay between structure and chemistry of the constituents iron, chromium, and molybdenum (Fe-Cr-Mo). Carbon (C), and eventually boron (B), are also important constituents of steels, although in small quantities. In particular, nanoscale inhomogeneities along the surface can have an impact on material failure but are still poorly understood. Addressing a stainless-type glass-forming Fe50Cr15Mo14C15B6 alloy and using a combination of complementary high-resolution analytical techniques, we relate near-atomistic insights into increasingly inhomogeneous nanostructures with time- and element-resolved dissolution behavior. The progressive elemental partitioning on the nanoscale determines the degree of passivation. A detrimental transition from Cr-controlled passivity to Mo-controlled breakdown is dissected atom by atom, demonstrating the importance of nanoscale knowledge for understanding corrosion.

4.
Nature ; 439(7077): 707-10, 2006 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16467834

RESUMO

Corrosion destroys more than three per cent of the world's GDP. Recently, the electrochemical decomposition of metal alloys has been more productively harnessed to produce porous materials with diverse technological potential. High-resolution insight into structure formation during electrocorrosion is a prerequisite for an atomistic understanding and control of such electrochemical surface processes. Here we report atomic-scale observations of the initial stages of corrosion of a Cu3Au111 single crystal alloy within a sulphuric acid solution. We monitor, by in situ X-ray diffraction with picometre-scale resolution, the structure and chemical composition of the electrolyte/alloy interface as the material decomposes. We reveal the microscopic structural changes associated with a general passivation phenomenon of which the origin has been hitherto unclear. We observe the formation of a gold-enriched single-crystal layer that is two to three monolayers thick, and has an unexpected inverted (CBA-) stacking sequence. At higher potentials, we find that this protective passivation layer dewets and pure gold islands are formed; such structures form the templates for the growth of nanoporous metals. Our experiments are carried out on a model single-crystal system. However, the insights should equally apply within a crystalline grain of an associated polycrystalline electrode fabricated from many other alloys exhibiting a large difference in the standard potential of their constituents, such as stainless steel (see ref. 5 for example) or alloys used for marine applications, such as CuZn or CuAl.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...