Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35202273

RESUMO

The presence of plastic cosmetic microbeads in the environment due to their extensive use in society and inevitable dispersal into wastewater is concerning. Therefore, it is vital to understand the processes of microplastic uptake and elimination by aquatic organisms, and to further assess their potential to cause harmful effects and wider impacts. We therefore investigated the short-term (48-h) and long-term (21-d) uptake, elimination, and effects of exposure to polyethylene microbeads (a mixture of fragments and spheres extracted from commercially available facial scrubs) on the freshwater snail, Biomphalaria glabrata. We found fast uptake in the short-term (75 µg/g/h) and the long-term (6.94 µg/g/h) in B. glabrata exposed to 800 particles/200-mL and 80 particles/200-mL, respectively. Irregular fragments were more easily ingested and egested compared to spheres (ANOVA, p < 0.05) in both 48-h and 21-d exposures. The mean size of the fragments in B. glabrata tissues (413 ± 16 µm) after 48-h exposure was significantly larger than that of the standard sample (369 ± 26 µm) (ANOVA, F3,20 = 3.339, p = 0.033), suggesting that aggregation in the gut may occur. Floating feces containing microbeads were observed in the long-term exposure, which could alter the fate, behavior, and bioavailability of egested microbeads. No significant effects on survival and growth were shown within 48-h or 21-d exposure periods. Thus, further studies on the specific features of microplastics (e.g., their shape and size) influencing uptake and elimination, as well as toxic molecular mechanisms, should be explored in future ecotoxicological studies.

2.
Environ Toxicol Chem ; 41(4): 880-887, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33818803

RESUMO

Any uncertainty in determining numbers of microplastics in the environment may be a barrier to assessing their impact and may stem from various aspects of methodologies used to quantify them. We undertook a comparison of approaches to quantify and characterize microplastics in 4 personal care products. The aim was not only to determine how many particles were present but to assess any differences due to the methods used. Counting of extracted microplastics was undertaken using particle size analysis, light microscopy, and imaging flow cytometry. Micro-Fourier transform infrared spectroscopy (µ-FTIR) was used to characterize the particles in each product. The mean size distribution of microplastics differed depending on the method employed, and it was apparent that imaging flow cytometry was affected by high background noise that may require staining of plastics to overcome. The application of µ-FTIR confirmed polyethylene as the microplastic in each product. Methodological challenges encountered in the study and the literature have highlighted the need for standardization of methods for determining microplastics. Environ Toxicol Chem 2022;41:880-887. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cosméticos , Poluentes Químicos da Água , Cosméticos/análise , Monitoramento Ambiental/métodos , Microplásticos , Plásticos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...