Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(6): e2350620, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561974

RESUMO

With the continued transmission of SARS-CoV-2 across widely vaccinated populations, it remains important to develop new vaccines and vaccination strategies capable of providing protective immunity and limiting the spread of disease. Heterologous prime-boost vaccination based on the selection of different vaccine formulations and administration routes for priming and booster doses presents a promising strategy for inducing broader immune responses in key systemic and respiratory mucosal compartments. Intranasal vaccination can induce mucosal immune responses at the site of SARS-CoV-2 infection; however, the lack of clinically approved mucosal adjuvants makes it difficult to induce robust immune responses with protein subunit vaccines. Herein, we evaluated the immunogenicity of heterologous prime-boost regimens in mice and hamsters based on a parenteral vaccination of the antigen in combination with sulfated lactosylarchaeol (SLA) archaeosomes, a liposome adjuvant comprised of a single semisynthetic archaeal lipid, followed by an intranasally administered unadjuvanted SARS-CoV-2 spike antigen. Intranasal administration of unadjuvanted spike to mice and hamsters increased serum spike-specific IgG titers and spike-neutralizing activity compared with nonboosted animals. Spike-specific IgA responses were also detected in the bronchoalveolar lavage fluid in the lungs of mice that received an intranasal boost. In hamsters, the intranasal boost showed high efficacy against SARS-CoV-2 infection by protecting from body weight loss and reducing viral titers in the lungs and nasal turbinate. Overall, our heterologous intramuscular prime-intranasal boost with SLA-adjuvanted and unadjuvanted spike, respectively, demonstrated the potential of protein subunit formulations to promote antigen-specific systemic and mucosal immune responses.


Assuntos
Administração Intranasal , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Camundongos , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Cricetinae , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Imunização Secundária , Adjuvantes Imunológicos/administração & dosagem , Camundongos Endogâmicos BALB C , Imunidade nas Mucosas/imunologia , Humanos , Vacinação/métodos
2.
Commun Med (Lond) ; 3(1): 116, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612423

RESUMO

BACKGROUND: As the COVID-19 pandemic continues to evolve, novel vaccines need to be developed that are readily manufacturable and provide clinical efficacy against emerging SARS-CoV-2 variants. Virus-like particles (VLPs) presenting the spike antigen at their surface offer remarkable benefits over other vaccine antigen formats; however, current SARS-CoV-2 VLP vaccines candidates in clinical development suffer from challenges including low volumetric productivity, poor spike antigen density, expression platform-driven divergent protein glycosylation and complex upstream/downstream processing requirements. Despite their extensive use for therapeutic protein manufacturing and proven ability to produce enveloped VLPs, Chinese Hamster Ovary (CHO) cells are rarely used for the commercial production of VLP-based vaccines. METHODS: Using CHO cells, we aimed to produce VLPs displaying the full-length SARS-CoV-2 spike. Affinity chromatography was used to capture VLPs released in the culture medium from engineered CHO cells expressing spike. The structure, protein content, and glycosylation of spikes in VLPs were characterized by several biochemical and biophysical methods. In vivo, the generation of neutralizing antibodies and protection against SARS-CoV-2 infection was tested in mouse and hamster models. RESULTS: We demonstrate that spike overexpression in CHO cells is sufficient by itself to generate high VLP titers. These VLPs are evocative of the native virus but with at least three-fold higher spike density. In vivo, purified VLPs elicit strong humoral and cellular immunity at nanogram dose levels which grant protection against SARS-CoV-2 infection. CONCLUSIONS: Our results show that CHO cells are amenable to efficient manufacturing of high titers of a potently immunogenic spike protein-based VLP vaccine antigen.


Virus-like particles (VLPs) have a structure that is similar to viruses but they cannot cause infection or illness. If VLPs are injected into the body they produce an immune response similar to that seen following infection by a virus. This means that VLPs can be used as vaccines against viruses that cause illness in people. Many drugs, named biologics, are manufactured using living cells, including cells that were originally derived from Chinese Hamster Ovaries (CHO cells). We developed a simple method to produce VLPs similar to the SARS-CoV-2 virus in CHO cells. We show that vaccination of rodents with these VLPs prevents them from becoming ill following infection with SARS-CoV-2. These VLPs could become a part of an alternative, easily produced vaccine for the prevention of COVID-19 in humans.

3.
Front Immunol ; 14: 1182556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122746

RESUMO

Liposomes composed of sulfated lactosyl archaeol (SLA) have been shown to be a safe and effective vaccine adjuvant with a multitude of antigens in preclinical studies. In particular, SLA-adjuvanted SARS-CoV-2 subunit vaccines based on trimeric spike protein antigens were shown to be immunogenic and efficacious in mice and hamsters. With the continued emergence of SARS-CoV-2 variants, we sought to evaluate next-generation vaccine formulations with an updated antigenic identity. This was of particular interest for the widespread Omicron variant, given the abundance of mutations and structural changes observed within its spike protein compared to other variants. An updated version of our resistin-trimerized SmT1 corresponding to the B.1.1.529 variant was successfully generated in our Chinese Hamster Ovary (CHO) cell-based antigen production platform and characterized, revealing some differences in protein profile and ACE2 binding affinity as compared to reference strain-based SmT1. We next evaluated this Omicron-based spike antigen for its immunogenicity and ability to generate robust antigen-specific immune responses when paired with SLA liposomes or AddaS03 (a mimetic of the AS03 oil-in-water emulsion adjuvant system found in commercialized SARS-CoV-2 protein vaccines). Immunization of mice with vaccine formulations containing this updated antigen with either adjuvant stimulated neutralizing antibody responses favouring Omicron over the reference strain. Cell-mediated responses, which play an important role in the neutralization of intracellular infections, were induced to a much higher degree with the SLA adjuvant relative to the AddaS03-adjuvanted formulations. As such, updated vaccines that are better capable of targeting towards SARS-CoV-2 variants can be generated through an optimized combination of antigen and adjuvant components.


Assuntos
Adjuvantes de Vacinas , COVID-19 , Cricetinae , Animais , Camundongos , SARS-CoV-2 , Glicolipídeos , Sulfatos , Células CHO , Lipossomos , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , Cricetulus , Imunidade Celular , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Archaea , Vacinas contra COVID-19
4.
Nat Commun ; 14(1): 16, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627271

RESUMO

APOBEC3 (A3) proteins are host-encoded deoxycytidine deaminases that provide an innate immune barrier to retroviral infection, notably against HIV-1. Low levels of deamination are believed to contribute to the genetic evolution of HIV-1, while intense catalytic activity of these proteins can induce catastrophic hypermutation in proviral DNA leading to near-total HIV-1 restriction. So far, little is known about how A3 cytosine deaminases might impact HIV-1 proviral DNA integration sites in human chromosomal DNA. Using a deep sequencing approach, we analyze the influence of catalytic active and inactive APOBEC3F and APOBEC3G on HIV-1 integration site selections. Here we show that DNA editing is detected at the extremities of the long terminal repeat regions of the virus. Both catalytic active and non-catalytic A3 mutants decrease insertions into gene coding sequences and increase integration sites into SINE elements, oncogenes and transcription-silencing non-B DNA features. Our data implicates A3 as a host factor influencing HIV-1 integration site selection and also promotes what appears to be a more latent expression profile.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , HIV-1/genética , HIV-1/metabolismo , Desaminase APOBEC-3G/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Proteínas/metabolismo , Antirretrovirais , Integração Viral/genética , Citidina/metabolismo , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo
5.
NPJ Vaccines ; 7(1): 118, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224247

RESUMO

Using our strongly immunogenic SmT1 SARS-CoV-2 spike antigen platform, we developed antigens based on the Beta & Delta variants of concern (VOC). These antigens elicited higher neutralizing antibody activity to the corresponding variant than comparable vaccine formulations based on the original reference strain, while a multivalent vaccine generated cross-neutralizing activity in all three variants. This suggests that while current vaccines may be effective at reducing severe disease to existing VOC, variant-specific antigens, whether in a mono- or multivalent vaccine, may be required to induce optimal immune responses and reduce infection against arising variants.

6.
Sci Rep ; 12(1): 9772, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697917

RESUMO

With the persistence of the SARS-CoV-2 pandemic and the emergence of novel variants, the development of novel vaccine formulations with enhanced immunogenicity profiles could help reduce disease burden in the future. Intranasally delivered vaccines offer a new modality to prevent SARS-CoV-2 infections through the induction of protective immune responses at the mucosal surface where viral entry occurs. Herein, we evaluated a novel protein subunit vaccine formulation containing a resistin-trimerized prefusion Spike antigen (SmT1v3) and a proteosome-based mucosal adjuvant (BDX301) formulated to enable intranasal immunization. In mice, the formulation induced robust antigen-specific IgG and IgA titers, in the blood and lungs, respectively. In addition, the formulations were highly efficacious in a hamster challenge model, reducing viral load and body weight loss. In both models, the serum antibodies had strong neutralizing activity, preventing the cellular binding of the viral Spike protein based on the ancestral reference strain, the Beta (B.1.351) and Delta (B.1.617.2) variants of concern. As such, this intranasal vaccine formulation warrants further development as a novel SARS-CoV-2 vaccine.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Imunização , Camundongos , SARS-CoV-2
7.
Methods Mol Biol ; 2412: 179-231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34918246

RESUMO

Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.


Assuntos
Vacinas , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Antígenos , Humanos , Imunidade Inata
8.
Vaccines (Basel) ; 11(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36679875

RESUMO

Continuous viral evolution of SARS-CoV-2 has resulted in variants capable of immune evasion, vaccine breakthrough infections and increased transmissibility. New vaccines that invoke mucosal immunity may provide a solution to reducing virus transmission. Here, we evaluated the immunogenicity of intranasally administered subunit protein vaccines composed of a stabilized SARS-CoV-2 spike trimer or the receptor binding domain (RBD) adjuvanted with either cholera toxin (CT) or an archaeal lipid mucosal adjuvant (AMVAD). We show robust induction of immunoglobulin (Ig) G and IgA responses in plasma, nasal wash and bronchoalveolar lavage in mice only when adjuvant is used in the vaccine formulation. While the AMVAD adjuvant was more effective at inducing systemic antibodies against the RBD antigen than CT, CT was generally more effective at inducing overall higher IgA and IgG titers against the spike antigen in both systemic and mucosal compartments. Furthermore, vaccination with adjuvanted spike led to superior mucosal IgA responses than with the RBD antigen and produced broadly targeting neutralizing plasma antibodies against ancestral, Delta and Omicron variants in vitro; whereas adjuvanted RBD elicited a narrower antibody response with neutralizing activity only against ancestral and Delta variants. Our study demonstrates that intranasal administration of an adjuvanted protein subunit vaccine in immunologically naïve mice induced both systemic and mucosal neutralizing antibody responses that were most effective at neutralizing SARS-CoV-2 variants when the trimeric spike was used as an antigen compared to RBD.

9.
Sci Rep ; 11(1): 21849, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750472

RESUMO

The huge worldwide demand for vaccines targeting SARS-CoV-2 has necessitated the continued development of novel improved formulations capable of reducing the burden of the COVID-19 pandemic. Herein, we evaluated novel protein subunit vaccine formulations containing a resistin-trimerized spike antigen, SmT1. When combined with sulfated lactosyl archaeol (SLA) archaeosome adjuvant, formulations induced robust antigen-specific humoral and cellular immune responses in mice. Antibodies had strong neutralizing activity, preventing viral spike binding and viral infection. In addition, the formulations were highly efficacious in a hamster challenge model reducing viral load and body weight loss even after a single vaccination. The antigen-specific antibodies generated by our vaccine formulations had stronger neutralizing activity than human convalescent plasma, neutralizing the spike proteins of the B.1.1.7 and B.1.351 variants of concern. As such, our SmT1 antigen along with SLA archaeosome adjuvant comprise a promising platform for the development of efficacious protein subunit vaccine formulations for SARS-CoV-2.


Assuntos
Adjuvantes Imunológicos/química , Antígenos Arqueais/química , Vacinas contra COVID-19/uso terapêutico , Lipídeos/química , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Peso Corporal , COVID-19/terapia , Chlorocebus aethiops , Cricetinae , Citocinas/metabolismo , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Passiva , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Peptídeos/química , Domínios Proteicos , SARS-CoV-2 , Receptores Toll-Like/imunologia , Células Vero , Carga Viral , Soroterapia para COVID-19
10.
Viruses ; 12(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963173

RESUMO

Choline is an essential nutrient required for normal neuronal and muscular development, as well as homeostatic regulation of hepatic metabolism. In the liver, choline is incorporated into the main eukaryotic phospholipid, phosphatidylcholine (PC), and can enter one-carbon metabolism via mitochondrial oxidation. Hepatitis C virus (HCV) is a hepatotropic positive-strand RNA virus that similar to other positive-strand RNA viruses and can impact phospholipid metabolism. In the current study we sought to interrogate if HCV modulates markers of choline metabolism following in vitro infection, while subsequently assessing if the inhibition of choline uptake and metabolism upon concurrent HCV infection alters viral replication and infectivity. Additionally, we assessed whether these parameters were consistent between cells cultured in fetal bovine serum (FBS) or human serum (HS), conditions known to differentially affect in vitro HCV infection. We observed that choline transport in FBS- and HS-cultured Huh7.5 cells is facilitated by the intermediate affinity transporter, choline transporter-like family (CTL). HCV infection in FBS, but not HS-cultured cells diminished CTL1 transcript and protein expression at 24 h post-infection, which was associated with lower choline uptake and lower incorporation of choline into PC. No changes in other transporters were observed and at 96 h post-infection, all differences were normalized. Reciprocally, limiting the availability of choline for PC synthesis by use of a choline uptake inhibitor resulted in increased HCV replication at this early stage (24 h post-infection) in both FBS- and HS-cultured cells. Finally, in chronic infection (96 h post-infection), inhibiting choline uptake and metabolism significantly impaired the production of infectious virions. These results suggest that in addition to a known role of choline kinase, the transport of choline, potentially via CTL1, might also represent an important and regulated process during HCV infection.


Assuntos
Carcinoma Hepatocelular/metabolismo , Colina/metabolismo , Hepacivirus/fisiologia , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antígenos CD/metabolismo , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Meios de Cultura/química , Humanos , Neoplasias Hepáticas/virologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Soroalbumina Bovina/farmacologia , Replicação Viral
11.
Sci Rep ; 9(1): 16039, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690751

RESUMO

The CytoFLEX is a novel semiconductor-based flow cytometer that utilizes avalanche photodiodes, wavelength-division multiplexing, enhanced optics, and diode lasers to maximize light capture and minimize optical and electronic noise. Due to an increasing interest in the use of extracellular vesicles (EVs) as disease biomarkers, and the growing desire to use flow cytometry for the analyses of biological nanoparticles, we assessed the light-scatter sensitivity of the CytoFLEX for small-particle detection. We found that the CytoFLEX can fully resolve 70 nm polystyrene and 98.6 nm silica beads by violet side scatter (VSSC). We further analyzed the detection limit for biological nanoparticles, including viruses and EVs, and show that the CytoFLEX can detect viruses down to 81 nm and EVs at least as small as 65 nm. Moreover, we could immunophenotype EV surface antigens, including directly in blood and plasma, demonstrating the double labeling of platelet EVs with CD61 and CD9, as well as triple labeling with CD81 for an EV subpopulation in one donor. In order to assess the refractive indices (RIs) of the viruses and EVs, we devised a new method to inversely calculate the RIs using the intensity vs. size data together with Mie-theory scatter efficiencies scaled to reference-particle measurements. Each of the viruses tested had an equivalent RI, approximately 1.47 at 405 nm, which suggests that flow cytometry can be more broadly used to easily determine virus sizes. We also found that the RIs of EVs increase as the particle diameters decrease below 150 nm, increasing from 1.37 for 200 nm EVs up to 1.61 for 65 nm EVs, expanding the lower range of EVs that can be detected by light scatter. Overall, we demonstrate that the CytoFLEX has an unprecedented level of sensitivity compared to conventional flow cytometers. Accordingly, the CytoFLEX can be of great benefit to virology and EV research, and will help to expand the use of flow cytometry for minimally invasive liquid biopsies by allowing for the direct analysis of antigen expression on biological nanoparticles within patient samples, including blood, plasma, urine and bronchoalveolar lavages.


Assuntos
Antígenos CD/sangue , Plaquetas , Citometria de Fluxo/instrumentação , Nanopartículas/química , Semicondutores , Adulto , Plaquetas/citologia , Plaquetas/metabolismo , Feminino , Humanos , Masculino , Poliestirenos/química , Dióxido de Silício/química
12.
Sci Rep ; 7(1): 17769, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259315

RESUMO

Retroviruses and small EVs overlap in size, buoyant densities, refractive indices and share many cell-derived surface markers making them virtually indistinguishable by standard biochemical methods. This poses a significant challenge when purifying retroviruses for downstream analyses or for phenotypic characterization studies of markers on individual virions given that EVs are a major contaminant of retroviral preparations. Nanoscale flow cytometry (NFC), also called flow virometry, is an adaptation of flow cytometry technology for the analysis of individual nanoparticles such as extracellular vesicles (EVs) and retroviruses. In this study we systematically optimized NFC parameters for the detection of retroviral particles in the range of 115-130 nm, including viral production, sample labeling, laser power and voltage settings. By using the retroviral envelope glycoprotein as a selection marker, and evaluating a number of fluorescent dyes and labeling methods, we demonstrate that it is possible to confidently distinguish retroviruses from small EVs by NFC. Our findings make it now possible to individually phenotype genetically modified retroviral particles that express a fluorescent envelope glycoprotein without removing EV contaminants from the sample.


Assuntos
Vesículas Extracelulares/química , Nanopartículas/química , Retroviridae/química , Animais , Biomarcadores/química , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fenótipo , Vírion/química
13.
Vaccine ; 34(42): 5082-5089, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27614781

RESUMO

Vaccinia virus (VV) is an oncolytic virus that is currently being evaluated as a promising cancer vaccine in several phase I, II and III clinical trials. Although several quality control tests are performed on each new batch of virus, these do not routinely include a systematic characterization of virus particle homogeneity, or relate the infectious titer to the total number of submicron sized particles (SSPs) present in the sample. SSPs are comprised of infectious virus and non-infectious viral particles, but also cell contaminants derived from the virus isolation procedures, such as cellular vesicles and debris. Here we have employed flow virometry (FV) analysis and sorting to isolate and characterize distinct SSP populations in therapeutic oncolytic VV preparations. We show that VV preparations contain SSPs heterogeneous in size and include large numbers of non-infectious VV particles. Furthermore, we used FV to illustrate how VV has a propensity to aggregate over time and under various handling and storage procedures. Accordingly, we find that together the infectious titer, the total number of SSPs, the number of viral genomes and the level of particle aggregation in a sample constitute useful parameters that greatly facilitate inter-sample assessment of physical quality, and also provides a means to monitor sample deterioration over time. Additionally, we have successfully employed FV sorting to further isolate virus from other particles by identifying a lipophilic dye that preferentially stains VV over other SSPs in the sample. Overall, we demonstrate that FV is a fast and effective tool that can be used to perform quality, and consistency control assessments of oncolytic VV vaccine preparations.


Assuntos
Citometria de Fluxo/métodos , Vírus Oncolíticos , Vaccinia virus , Vírion/isolamento & purificação , Vesículas Extracelulares , Humanos , Terapia Viral Oncolítica , Vírus Oncolíticos/isolamento & purificação , Vaccinia virus/isolamento & purificação , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...