Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 320(1): 360-3, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18199448

RESUMO

A new type of intermediate structure was found in the salt-induced micelle-to-vesicle transition in a catanionic system composed of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) in aqueous solution with an excess of anionic surfactant. The appearance of symmetrically shaped hollow structures, which we named blastulae vesicles, is presented.

2.
Langmuir ; 23(5): 2376-81, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17243741

RESUMO

The transition of ionic micelles to vesicles with added salts is explored in this paper. The catanionic surfactant solution was comprised of sodium dodecylsulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) with an excess of SDS. The micellar size increased with concentration for all salts. No anion specificity was found, probably because of the excess of SDS. However, when the cation of the added salt was varied, large differences were observed in the hydrodynamic radii of the aggregates. A classification of the cations according to their ability to increase the measured hydrodynamic radii follows a Hofmeister series. The change in aggregate size can be explained by modified counterion binding and dehydration of the surfactant headgroups.

3.
Langmuir ; 21(15): 6769-75, 2005 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-16008386

RESUMO

In the present work hydrophobic dyes, i.e. disperse red 13 (DR-13; (2-[4-(2-chloro-4-nitrophenylazo)-N-ethylphenylamino]ethanol) and Jaune au gras W1201 (1H-indene-1,3(2H)-dione,2-(2-quinolinyl)), are solubilized in water with the help of different additives: acetone and 1-propanol as typical cosolvents, sodium xylene sulfonate (SXS) as a representative of a classical hydrotrope, sodium dodecyl sulfate (SDS) as a typical surfactant, and finally some "solvosurfactants" [ propylene glycol monoalkyl ether derivatives (CiPOj: i = 1, j = 1 and 3; i = 3, j = 1 and 2; i = 4 and tertio-butyl, j = 1) and 1-propoxy-2-ethanol (C3EO1)]. These solvosurfactants are short amphiphiles that do not form well-defined structures in water such as micelles. For all additives an exponential increase in the solubilizations of the two studied hydrophobic dyes was observed when their concentrations in water were increased. Except for the SDS solution, no difference in the overall shapes of the solubilization curves (dye solubility against additive concentration) was found. All the studied molecules were classified according to their hydrotropic efficiencies, i.e., their abilities to solubilize a hydrophobic, sparingly soluble compound in water. The volume of the hydrophobic parts of the studied additives, roughly evaluated by simple calculations, was found to influence strongly the hydrotropic efficiency; i.e. the larger the hydrophobic part of the additive, the better the hydrotropic efficiency. By contrast, the hydrophilic part carrying a charge or not is of minor importance. Taking the hydrophobic part of the molecules as the key parameter, the water solubilization efficiency of cosolvents, hydrotropes, and solvosurfactants can be described in a coherent way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...