Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406425, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748516

RESUMO

Hydrogen and helium saturate the 1D pore systems of the high-silica (Si/Al>30) zeolites Theta-One (TON), and Mobile-Twelve (MTW) at high pressure based on x-ray diffraction, Raman spectroscopy and Monte Carlo simulations. In TON, a strong 22% volume increase occurs above 5 GPa with a transition from the collapsed P21 to a symmetrical, swelled Cmc21 form linked to an increase in H2 content from 12 H2/unit cell in the pores to 35 H2/unit cell in the pores and in the framework of the material. No transition and continuous collapse of TON is observed in helium indicating that the mechanism of H2 insertion is distinct from other fluids. The insertion of hydrogen in the larger pores of MTW results in a strong 11% volume increase at 4.3 GPa with partial symmetrization followed by a second volume increase of 4.5% at 7.5 GPa, corresponding to increases in hydrogen content from 43 to 67 and then to 93 H2/unit cell. Flexible 1D siliceous zeolites have a very high H2 capacity (1.5 and 1.7 H2/SiO2 unit for TON and MTW, respectively) due to H2 insertion in the pores and the framework, in contrast to other atoms and molecules, thereby providing a mechanism for strong swelling.

2.
Waste Manag ; 175: 339-347, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241823

RESUMO

The constantly increasing demand of Rare Earth Elements (REEs) made them to be part of the so-called "critical elements" indispensable for the energy transition. The monopoly of only a few countries, the so-called balance problem between demand and natural abundance, and the need to limit the environmental costs of their mining, stress the necessity of a recycling policy of these elements. Different methods have been tested for REEs recovery. Despite the well-known ion-exchange properties of zeolites, just few preliminary works investigated their application for REEs separation and recycle. In this work we present a double ion exchange experiment on a NH4-13X zeolite, aimed at the recovery of different REEs from solutions mimicking the composition of liquors obtained from the leaching of spent fluorescent lamps. The results showed that the zeolite was able to exchange all the REEs tested, but the exchange capacity was different: despite Y being the more concentrated REE in the solutions, the cation exchange was lower than less concentrated ones (16 atoms p.u.c. vs 21 atoms for Ce and La solutions), suggesting a possible selectivity. In order to recover REEs from the zeolite, a second exchange with an ammonium solution was performed. The analyses of the zeolites show that almost all of Ce and Eu remain in the zeolite, while nearly half of La and Y are released. This, once again, suggests a possible selective release of REEs and open the possibility for a recovery process in which Rare Earths can be effectively separated.


Assuntos
Utensílios Domésticos , Metais Terras Raras , Zeolitas , Metais Terras Raras/análise , Mineração , Reciclagem
3.
Materials (Basel) ; 17(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203936

RESUMO

The thermal decomposition processes of coprecipitated Cu-Ni-Al and Cu-Ni-Fe hydroxides and the formation of the mixed oxide phases were followed by thermogravimetry and derivative thermogravimetry analysis (TG - DTG) and in situ X-ray diffraction (XRD) in a temperature range from 25 to 800 °C. The as-prepared samples exhibited layered double hydroxide (LDH) with a rhombohedral structure for the Ni-richer Al- and Fe-bearing LDHs and a monoclinic structure for the CuAl LDH. Direct precipitation of CuO was also observed for the Cu-richest Fe-bearing samples. After the collapse of the LDHs, dehydration, dehydroxylation, and decarbonation occurred with an overlapping of these events to an extent, depending on the structure and composition, being more pronounced for the Fe-bearing rhombohedral LDHs and the monoclinic LDH. The Fe-bearing amorphous phases showed higher reactivity than the Al-bearing ones toward the crystallization of the mixed oxide phases. This reactivity was improved as the amount of embedded divalent cations increased. Moreover, the influence of copper was effective at a lower content than that of nickel.

4.
Inorg Chem ; 61(45): 18059-18066, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36325989

RESUMO

Low-dimensional boron nitride (BN) chains were prepared in the one-dimensional pores of the siliceous zeolites theta-one (TON) and Mobil-twelve (MTW) by the infiltration, followed by the dehydrocoupling and pyrolysis of ammonia borane under high-pressure, high-temperature conditions. High-pressure X-ray diffraction in a diamond anvil cell and in a large-volume device was used to follow in situ these different steps in order to determine the optimal conditions for this process. Based on these results, millimeter-sized samples of BN/TON and BN/MTW were synthesized. Characteristic B-N stretching vibrations of low-dimensional BN were observed by infrared and Raman spectroscopies. The crystal structures were determined using a combination of X-ray diffraction and density functional theory with one and two one-dimensional zig-zag (BN)x chains per pore in BN/TON and BN/MTW, respectively. These 1-D BN chains potentially have interesting photoluminescence properties in the far ultraviolet region of the electromagnetic spectrum.

5.
Environ Sci Pollut Res Int ; 29(43): 65176-65184, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35478397

RESUMO

The increasing rare earth elements' (REE) demand to meet the market request and the current political scenario show that it is essential to find good solutions to recover these elements from waste (both industrial and mining). Zeolites are microporous materials with high cation exchange capacity, up to now only little investigated for REE recycle. Here, we propose the use of NH4+-exchanged zeolite L for Ce recovery from a very diluted solution (0.002 M), mimicking the Ce3+ concentration of the liquors deriving from the leaching of spent catalysts. The aim of this work is twofold: (i) to investigate the exploitability of zeolite L as cation exchanger in the Ce recovery; and (ii) to determine the best working conditions. The investigated process consists of a coupled cation exchange: (1) in the first exchange the NH4+ cations - present in the zeolite porosities - are exchanged with the Ce3+ ions in the solution; and (2) in the second experiment, the Ce3+ trapped into the zeolite is recovered through a further exchange with NH4. The best working conditions for Ce3+ exchange of NH4-zeolite L are: batch system, liquid/solid ratio equal to 90 mL/g and 180 mL/g, 24 h of contact at 25 °C. The resulting Ce adsorption capacity (qt) is equal to ~25 mg/g and ~39 mg/g and the removal efficiency 100% and 77% for the two tested liquid/solid ratios, respectively. The kinetics was proved to be fast and consistent with industrial timing; no energy cost for temperature setting is required; and the acid pH (~4) of the solutions does not affect the zeolite structure stability and its exchange performance. It has been demonstrated that the zeolite framework is not affected by the exchange so that the same absorbent material can be employed many times.

6.
Phys Rev Lett ; 128(8): 081603, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275681

RESUMO

We propose inverse renormalization group transformations within the context of quantum field theory that produce the appropriate critical fixed point structure, give rise to inverse flows in parameter space, and evade the critical slowing down effect in calculations pertinent to criticality. Given configurations of the two-dimensional ϕ^{4} scalar field theory on sizes as small as V=8^{2}, we apply the inverse transformations to produce rescaled systems of size up to V^{'}=512^{2} which we utilize to extract two critical exponents. We conclude by discussing how the approach is generally applicable to any method that successfully produces configurations from a statistical ensemble and how it can give novel insights into the structure of the renormalization group.

7.
Phys Chem Chem Phys ; 24(15): 8820-8831, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352736

RESUMO

Advanced solid-state and liquid-state nuclear magnetic resonance (NMR) approaches have enabled high throughput information about functional groups and types of bonding in a variety of lignin fragments from degradation processes and laboratory synthesis. The use of quantum chemical (QM) methods may provide detailed insight into the relationships between NMR parameters and specific lignin conformations and their dynamics, whereas a rapid prediction of NMR properties could be achieved by combining QM with machine-learning (ML) approaches. In this study, we present the effect of conformations of ß-O-4 linked lignin guaiacyl dimers on 13C and 1H chemical shifts while considering the thermal fluctuations of the guaiacyl dimers in water, ethanol and acetonitrile, as well as their binary 75 wt% aqueous solutions. Molecular dynamics and QM/MM simulations were used to describe the dynamics of guaiacyl dimers. The isotropic shielding of the majority of the carbon nuclei was found to be less sensitive toward a specific conformation than that of the hydrogen nuclei. The largest 1H downfield shifts of 4-6 ppm were established in the hydroxy groups and the rings in the presence of organic solvent components. The Gradient Boosting Regressor model has been trained on 60% of the chemical environments in the dynamics trajectories with the NMR isotropic shielding (σiso), computed with density-functional theory, for lignin atoms. The high efficiency of this machine-learning model in predicting the remaining 40% σiso(13C) and σiso(1H) values was established.


Assuntos
Lignina , Imageamento por Ressonância Magnética , Lignina/química , Aprendizado de Máquina , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Teoria Quântica , Água
8.
Phys Chem Chem Phys ; 23(36): 20541-20552, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505580

RESUMO

In this study the absorption of glycine, α-alanine and ß-alanine amino acids into the pores of the synthetic zeolite Na-mordenite was investigated with the aim of: (i) evaluating the effectiveness of the MOR framework type in amino acid adsorption (via vapor and aqueous loading); (ii) understanding the host-guest and guest-guest interactions to possibly design a tailor made material and a loading procedure able to maximize the amino acid adsorption; (iii) studying the effect of pressure on the adsorbed amino acids such as, for instance, possible amino acid condensation. The structural characterization, carried out with the combination of diffractometric and infrared spectroscopy analyses, shows that MOR can adsorb amino acids, which are found both in protonated/deprotonated (possibly also generating zwitterions) form. Vapor loading is ineffective for α-alanine, while it is effective in ß-alanine and glycine adsorption, even if using different loading degrees. The shape and size of MOR channels make this zeolite suitable to accommodate a peptide. In a glycine loaded sample some molecules condensate to form cyclic dimers, while linear oligomers are detected only in a ß-alanine MOR hybrid. The sample loaded with α-L-alanine from aqueous solution does not show the presence of amide bond signals, indicating that the molecules are mostly hosted in zwitterionic form in Na-MOR channels. The application of external baric stimuli does not induce substantial modifications in the structure of the glycine loaded zeolite; this result may be explained by the low number of molecules hosted in the channels. The amino acid amount within the zeolite pores is the most important reactivity parameter and an increased loading could induce chemical modifications.


Assuntos
Silicatos de Alumínio/química , Aminoácidos/química , Zeolitas/química , Cápsulas , Estrutura Molecular
9.
ACS Appl Mater Interfaces ; 13(23): 27237-27244, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34081853

RESUMO

Recently, filling zeolites with gaseous hydrocarbons at high pressures in diamond anvil cells has been carried out to synthesize novel polymer-guest/zeolite-host nanocomposites with potential, intriguing applications, although the small amount of materials, 10-7 cm3, severely limited true technological exploitation. Here, liquid phenylacetylene, a much more practical reactant, was polymerized in the 12 Å channels of the aluminophosphate Virginia Polytechnic Institute-Five (VFI) at about 0.8 GPa and 140 °C, with large volumes in the order of 0.6 cm3. The resulting polymer/VFI composite was investigated by synchrotron X-ray diffraction and optical and 1H, 13C, and 27Al nuclear magnetic resonance spectroscopy. The materials, consisting of disordered π-conjugated polyphenylacetylene chains in the pores of VFI, were deposited on quartz crystal microbalances and tested as gas sensors. We obtained promising sensing performances to water and butanol vapors, attributed to the finely tuned nanostructure of the composites. High-pressure synthesis is used here to obtain an otherwise unattainable true technological material.

10.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070500

RESUMO

This study presents a simple approach to prepare MOF-808, an ultra-stable Zr-MOF constructed from 6-connected zirconium clusters and 1,3,5-benzene tricarboxylic acid, with tailored particle sizes. Varying the amount of formic acid as a modulator in the range of 200-500 equivalents results in MOF-808 materials with a crystal size from 40 nm to approximately 1000 nm. Apart from the high specific surface area, a combination of a fraction of mesopore and plenty of acidic centers on the Zr-clusters induces a better interaction with the ionic pollutants such as K2Cr2O7 and anionic dyes. MOF-808 shows uptakes of up to 141.2, 642.0, and 731.0 mg/g for K2Cr2O7, sunset yellow, and quinoline yellow, respectively, in aqueous solutions at ambient conditions. The uptakes for the ionic dyes are significantly higher than those of other MOFs reported from the literature. Moreover, the adsorption capacity of MOF-808 remains stable after four cycles. Our results demonstrate that MOF-808 is a promising ideal platform for removing oxometallates and anionic dyes from water.

11.
J Phys Chem Lett ; 12(21): 5059-5063, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34019420

RESUMO

High-pressure X-ray diffraction and Raman spectroscopy in a diamond anvil cell were used to study the insertion of the chemical hydrogen storage material, ammonia borane, in the one-dimensional pores of the zeolite theta-1 TON. Heating of this material up to 300 °C under pressures up to 5 GPa resulted in the release of a significant amount of hydrogen due to the conversion of ammonia borane confined in the channels of TON and outside the zeolite to polyaminoborane and then polyiminoborane chains. The filling of TON with hydrogen resulted in a much greater increase in unit cell volume than that corresponding to thermal expansion of normal compact inorganic solids. This process at high temperature is accompanied by a phase transition from the collapsed high-pressure Pbn21 form to the more symmetric Cmc21 phase with expanded pores. This material has a high capacity for hydrogen adsorption under high-temperature, high-pressure conditions.

12.
Langmuir ; 36(47): 14403-14416, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202139

RESUMO

Understanding and controlling the physical adsorption of lignin compounds on cellulose pulp are key parameters in the successful optimization of organosolv processes. The effect of binary organic-aqueous solvents on the coordination of lignin to cellulose was studied with molecular dynamics simulations, considering ethanol and acetonitrile to be organic cosolvents in aqueous solutions in comparison to their monocomponent counterparts. The structures of the solvation shells around cellulose and lignin and the energetics of lignin-cellulose adhesion indicate a more effective disruption of lignin-cellulose binding by binary solvents. The synergic effect between solvent components is explained by their preferential interactions with lignin-cellulose complexes. In the presence of pure water, long-lasting H-bonds in the lignin-cellulose complex are observed, promoted by the nonfavorable interactions of lignin with water. Ethanol and acetonitrile compete with water and lignin for cellulose oxygen binding sites, causing a nonlinear decrease in the lignin-cellulose interactions with the amount of the organic component. This effect is modulated by the water exclusion from the cellulose solvation shell by the organic solvent component. The amount and rate of water exclusion depend on the type of organic cosolvent and its concentration.

13.
J Mol Model ; 24(10): 292, 2018 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-30244346

RESUMO

The evolution of structural properties, thermodynamics and averaged (dynamic) total hardness values as a function of the composition of binary water-organic solvents, was rationalized in view of the intermolecular interactions. The organic solvents considered were ethanol, acetonitrile, and isopropanol at 0.25, 0.5, 0.75, and 1 mass fractions, and the results were obtained using molecular dynamics simulations. The site-to-site radial distribution functions reveal a well-defined peak for the first coordination shell in all solvents. A characteristic peak of the second coordination shell exists in aqueous mixtures of acetonitrile, whereas in the water-alcohol solvents, a second peak develops with the increase in alcohol content. From the computed coordination numbers, averaged hydrogen bonds and their lifetimes, we found that water mixed with acetonitrile largely preserves its structural features and promotes the acetonitrile structuring. Both the water and alcohol structures in their mixtures are disturbed and form hydrogen bonds between molecules of different kinds. The dynamic hardness values are obtained as the average over the total hardness values of 1200 snapshots per solvent type, extracted from the equilibrium dynamics. The dynamic hardness profile has a non-linear evolution with the liquid compositions, similarly to the thermodynamic properties of these non-ideal solvents. Graphical abstract Computed dynamic total hardness, as a function of the cosolvent mass fraction for water-ethanol (EtOH), water-isopropanol (2PrOH) and water-acetonitrile (AN).

14.
J Chem Phys ; 145(2): 024701, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27421421

RESUMO

The surface composition of bimetallics can be strongly altered by adsorbing molecules where the metal with the strongest interaction with the adsorbate segregates into the surface. To investigate the effect of reactive gas on the surface composition of Au-Cu alloy, we examined by means of density functional theory to study the segregation behavior of copper in gold matrices. The adsorption mechanisms of CO, NO, and O2 gas molecules on gold, copper, and gold-copper low index (111), (100), and (110) surfaces were analyzed from energetic and electronic points of view. Our results show a strong segregation of Cu toward the (110) surface in the presence of all adsorbed molecules. Interestingly, the Cu segregation toward the (111) and (100) surface could occur only in the presence of CO and at a lower extent in the presence of NO. The analysis of the electronic structure highlights the different binding characters of adsorbates inducing the Cu segregation.

15.
Bioresour Technol ; 216: 737-43, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27295251

RESUMO

Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw.


Assuntos
Biotecnologia/métodos , Celulose/metabolismo , Ácidos de Lewis/metabolismo , Metano/biossíntese , Triticum/química , Resíduos , Adsorção , Biodegradação Ambiental , Cristalização , Lignina/metabolismo , Polissacarídeos/metabolismo , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
16.
Molecules ; 21(1): E109, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26797593

RESUMO

Chitosan-zeolite Na-X composite beads with open porosity and different zeolite contents were prepared by an encapsulation method. Preparation conditions had to be optimised in order to stabilize the zeolite network during the polysaccharide gelling process. Composites and pure reference components were characterized using X-ray diffraction (XRD); scanning electron microscopy (SEM); N2 adsorption-desorption; and thermogravimetric analysis (TG). Cu(II) sorption was investigated at pH 6. The choice of drying method used for the storage of the adsorbent severely affects the textural properties of the composite and the copper sorption effectiveness. The copper sorption capacity of chitosan hydrogel is about 190 mg·g(-1). More than 70% of this capacity is retained when the polysaccharide is stored as an aerogel after supercrititcal CO2 drying, but nearly 90% of the capacity is lost after evaporative drying to a xerogel. Textural data and Cu(II) sorption data indicate that the properties of the zeolite-polysaccharide composites are not just the sum of the properties of the individual components. Whereas a chitosan coating impairs the accessibility of the microporosity of the zeolite; the presence of the zeolite improves the stability of the dispersion of chitosan upon supercritical drying and increases the affinity of the composites for Cu(II) cations. Chitosan-zeolite aerogels present Cu(II) sorption properties.


Assuntos
Cátions Bivalentes/química , Quitosana/química , Cobre/química , Nanocompostos/química , Zeolitas/química , Adsorção , Géis , Nanocompostos/ultraestrutura , Difração de Raios X
17.
Chem Soc Rev ; 42(9): 4141-71, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23348418

RESUMO

This review presents the state of the art of molecular simulation and theory of adsorption, intrusion and freezing in porous silica. Both silica pores of a simple geometry and disordered porous silicas which exhibit morphological and topological disorders are considered. We provide a brief description of the numerical models of porous silicas available in the literature and present the most common molecular simulation and theoretical methods. Adsorption in regular and irregular pores is discussed in the light of classical theories of adsorption and capillary condensation in pores. We also present the different evaporation mechanisms for disordered systems: pore blocking and cavitation. The criticality of fluids confined in pores, which is still the matter of debate, is then discussed. We review theoretical results for intrusion/extrusion and freezing in silica pores and discuss the validity of classical approaches such as the Washburn-Laplace equation and Gibbs-Thomson equation to describe the thermodynamics of intrusion and in-pore freezing. The validity of the most widely used characterization techniques is then discussed. We report some concluding remarks and suggest directions for future work.


Assuntos
Congelamento , Nanoestruturas/química , Nanotecnologia , Dióxido de Silício/química , Adsorção , Simulação de Dinâmica Molecular , Porosidade , Dióxido de Silício/síntese química , Propriedades de Superfície
18.
Chem Soc Rev ; 42(9): 3821-32, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23250616

RESUMO

Antimatter is barely known by the chemist community and this article has the vocation to explain how antimatter, in particular antihydrogen, can be obtained, as well as to show how mesoporous materials could be used as a further improvement for the production of antimatter at very low temperatures (below 1 K). The first experiments with mesoporous materials highlighted in this review show very promising and exciting results. Mesoporous materials such as mesoporous silicon, mesoporous material films, pellets of MCM-41 and silica aerogel show remarkable features for antihydrogen formation. Yet, the characteristics for the best future mesoporous materials (e.g. pore sizes, pore connectivity, shape, surface chemistry) remain to be clearly identified. For now among the best candidates are pellets of MCM-41 and aerogel with pore sizes between 10 and 30 nm, possessing hydrophobic patches on their surface to avoid ice formation at low temperature. From a fundamental standpoint, antimatter experiments could help to shed light on open issues, such as the apparent asymmetry between matter and antimatter in our universe and the gravitational behaviour of antimatter. To this purpose, basic studies on antimatter are necessary and a convenient production of antimatter is required. It is exactly where mesoporous materials could be very useful.


Assuntos
Hidrogênio/química , Tamanho da Partícula , Porosidade , Dióxido de Silício/química , Propriedades de Superfície , Temperatura
19.
Langmuir ; 28(25): 9526-34, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22650762

RESUMO

We report experimental nitrogen adsorption isotherms of organics-coated silicas, which exhibit a low-pressure desorption branch that does not meet the adsorption branch upon emptying of the pores. To address the physical origin of such a hysteresis loop, we propose an equilibrium thermodynamic model that enables one to explain this phenomenon. The present model assumes that, upon adsorption, a small amount of nitrogen molecules penetrate within the organic layer and reach adsorption sites that are located on the inorganic surface, between the grafted or adsorbed organic molecules. The number of accessible adsorption sites thus varies with the increasing gas pressure, and then we assume that it stays constant upon desorption. Comparison with experimental data shows that our model captures the features of nitrogen adsorption on such hybrid organic/inorganic materials. In particular, in addition to predicting the shape of the adsorption isotherm, the model is able to estimate, with a reasonable number of adjustable parameters, the height of the low-pressure hysteresis loop and to assess in a qualitative fashion the local density of the organic chains at the surface of the material.

20.
J Phys Chem B ; 114(6): 2140-52, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20104922

RESUMO

Lecithin/dodecylamine/lactose mixtures in ethanol/aqueous media led to the formation of sponge mesoporous silica (SMS) materials by means of tetraethoxysilane (TEOS) as silica source. SMS materials show a "sponge-mesoporous" porosity with a pore diameter of about 5-6 nm, in accordance to the length of a lecithin bilayer. SMS synthesis was developed to create a new class of powerful biocatalysts able to efficiently encapsulate enzymes by adding a porosity control to the classical sol-gel synthesis and by using phospholipids and lactose as protecting agents for the enzymes. In the present study, the formation of SMS was investigated by using electron paramagnetic resonance (EPR) probes inserted inside phospholipid bilayers. The influence of progressive addition of each component (ethanol, dodecylamine, lactose, TEOS) on phospholipid bilayers was first examined; then, the time evolution of EPR spectra during SMS synthesis was studied. Parameters informative of mobility, structure, order, and polarity around the probes were extracted by computer analysis of the EPR line shape. The results were discussed on the basis of solids characterization by X-ray diffraction, nitrogen isotherm, transmission electron microscopy, and scanning electron microscopy. The results, together with the well-known ability of ethanol to promote membrane hemifusion, suggested that the templating structure is a bicontinuous phospholipid bilayer phase, shaped as a gyroid, resulting of multiple membrane hemifusions induced by the high alcohol content used in SMS synthesis. SMS synthesis was compared to hexagonal mesoporous silica (HMS) synthesis accomplished by adding TEOS to a dodecylamine/EtOH/water mixture. EPR evidenced the difference between HMS and SMS synthesis; the latter uses an already organized but slowly growing mesophase of phospholipids, never observed before, whereas the former shows a progressive elongation of micelles into wormlike structures. SMS-type materials represent a new class of biocompatible materials and open a bright perspective for biomolecule processing for pharmaceutical, biocatalysis, biosensors, or biofuel cell applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...