Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Cell Mol Immunol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902348

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a main driver of immunosuppression in tumors. Understanding the mechanisms that determine the development and immunosuppressive function of these cells could provide new therapeutic targets to improve antitumor immunity. Here, using preclinical murine models, we discovered that exportin 1 (XPO1) expression is upregulated in tumor MDSCs and that this upregulation is induced by IL-6-induced STAT3 activation during MDSC differentiation. XPO1 blockade transforms MDSCs into T-cell-activating neutrophil-like cells, enhancing the antitumor immune response and restraining tumor growth. Mechanistically, XPO1 inhibition leads to the nuclear entrapment of ERK1/2, resulting in the prevention of ERK1/2 phosphorylation following the IL-6-mediated activation of the MAPK signaling pathway. Similarly, XPO1 blockade in human MDSCs induces the formation of neutrophil-like cells with immunostimulatory functions. Therefore, our findings revealed a critical role for XPO1 in MDSC differentiation and suppressive functions; exploiting these new discoveries revealed new targets for reprogramming immunosuppressive MDSCs to improve cancer therapeutic responses.

2.
Cancer Discov ; 14(4): 669-673, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571430

RESUMO

SUMMARY: The field of cancer neuroscience has begun to define the contributions of nerves to cancer initiation and progression; here, we highlight the future directions of basic and translational cancer neuroscience for malignancies arising outside of the central nervous system.


Assuntos
Neoplasias , Neurociências , Humanos , Sistema Nervoso Central , Previsões , Proteômica
3.
Nat Commun ; 15(1): 2803, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555305

RESUMO

Myeloid derived suppressor cells (MDSCs) are key regulators of immune responses and correlate with poor outcomes in hematologic malignancies. Here, we identify that MDSC mitochondrial fitness controls the efficacy of doxorubicin chemotherapy in a preclinical lymphoma model. Mechanistically, we show that triggering STAT3 signaling via ß2-adrenergic receptor (ß2-AR) activation leads to improved MDSC function through metabolic reprograming, marked by sustained mitochondrial respiration and higher ATP generation which reduces AMPK signaling, altering energy metabolism. Furthermore, induced STAT3 signaling in MDSCs enhances glutamine consumption via the TCA cycle. Metabolized glutamine generates itaconate which downregulates mitochondrial reactive oxygen species via regulation of Nrf2 and the oxidative stress response, enhancing MDSC survival. Using ß2-AR blockade, we target the STAT3 pathway and ATP and itaconate metabolism, disrupting ATP generation by the electron transport chain and decreasing itaconate generation causing diminished MDSC mitochondrial fitness. This disruption increases the response to doxorubicin and could be tested clinically.


Assuntos
Neoplasias Hematológicas , Células Supressoras Mieloides , Succinatos , Humanos , Glutamina/metabolismo , Neoplasias Hematológicas/metabolismo , Trifosfato de Adenosina/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/metabolismo
5.
Cell Mol Immunol ; 21(3): 260-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233562

RESUMO

Metabolic flexibility has emerged as a critical determinant of CD8+ T-cell antitumor activity, yet the mechanisms driving the metabolic flexibility of T cells have not been determined. In this study, we investigated the influence of the nuclear cap-binding complex (CBC) adaptor protein ARS2 on mature T cells. In doing so, we discovered a novel signaling axis that endows activated CD8+ T cells with flexibility of glucose catabolism. ARS2 upregulation driven by CD28 signaling reinforced splicing factor recruitment to pre-mRNAs and affected approximately one-third of T-cell activation-induced alternative splicing events. Among these effects, the CD28-ARS2 axis suppressed the expression of the M1 isoform of pyruvate kinase in favor of PKM2, a key determinant of CD8+ T-cell glucose utilization, interferon gamma production, and antitumor effector function. Importantly, PKM alternative splicing occurred independently of CD28-driven PI3K pathway activation, revealing a novel means by which costimulation reprograms glucose metabolism in CD8+ T cells.


Assuntos
Processamento Alternativo , Antígenos CD28 , Antígenos CD28/metabolismo , Processamento Alternativo/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T CD8-Positivos , Glucose/metabolismo
6.
Melanoma Res ; 34(2): 89-95, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051781

RESUMO

The intricate pathways of the sympathetic nervous system hold an inherently protective role in the setting of acute stress. This is achieved through dynamic immunomodulatory and neurobiological networks. However, excessive and chronic exposure to these stress-induced stimuli appears to cause physiologic dysfunction through several mechanisms that may impair psychosocial, neurologic, and immunologic health. Numerous preclinical observations have identified the beta-2 adrenergic receptor (ß2-AR) subtype to possess the strongest impact on immune dysfunction in the setting of chronic stressful stimuli. This prolonged expression of ß2-ARs appears to suppress immune surveillance and promote tumorigenesis within multiple cancer types. This occurs through several pathways, including (1) decreasing the frequency and function of CD8 + T-cells infiltrating the tumor microenvironment (TME) via inhibition of metabolic reprogramming during T cell activation, and (2) establishing an immunosuppressive profile within the TME including promotion of an exhausted T cell phenotype while simultaneously enhancing local and paracrine metastatic potential. The use of nonselective ß-AR antagonists appears to reverse many chronic stress-induced tumorigenic pathways and may also provide an additive therapeutic benefit for various immune checkpoint modulating agents including commonly utilized immune checkpoint inhibitors. Here we review the translational and clinical observations highlighting the foundational hypotheses that chronic stress-induced ß-AR signaling promotes a pro-tumoral immunophenotype and that blockade of these pathways may augment the therapeutic response of immune checkpoint inhibition within the scope of melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Receptores Adrenérgicos beta , Receptores Adrenérgicos beta 2 , Melanoma/tratamento farmacológico , Transdução de Sinais , Carcinogênese , Inibidores de Checkpoint Imunológico , Microambiente Tumoral
7.
Cell Death Dis ; 14(7): 470, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495596

RESUMO

Rectal cancer ranks as the second leading cause of cancer-related deaths. Neoadjuvant therapy for rectal cancer patients often results in individuals that respond well to therapy and those that respond poorly, requiring life-altering excision surgery. It is inadequately understood what dictates this responder/nonresponder divide. Our major aim is to identify what factors in the tumor microenvironment drive a fraction of rectal cancer patients to respond to radiotherapy. We also sought to distinguish potential biomarkers that would indicate a positive response to therapy and design combinatorial therapeutics to enhance radiotherapy efficacy. To address this, we developed an orthotopic murine model of rectal cancer treated with short course radiotherapy that recapitulates the bimodal response observed in the clinic. We utilized a robust combination of transcriptomics and protein analysis to identify differences between responding and nonresponding tumors. Our mouse model recapitulates human disease in which a fraction of tumors respond to radiotherapy (responders) while the majority are nonresponsive. We determined that responding tumors had increased damage-induced cell death, and a unique immune-activation signature associated with tumor-associated macrophages, cancer-associated fibroblasts, and CD8+ T cells. This signature was dependent on radiation-induced increases of Type I Interferons (IFNs). We investigated a therapeutic approach targeting the cGAS/STING pathway and demonstrated improved response rate following radiotherapy. These results suggest that modulating the Type I IFN pathway has the potential to improve radiation therapy efficacy in RC.


Assuntos
Interferon Tipo I , Neoplasias Retais , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos/patologia , Neoplasias Retais/genética , Neoplasias Retais/radioterapia , Resultado do Tratamento , Terapia Neoadjuvante/métodos , Microambiente Tumoral
8.
Temperature (Austin) ; 10(2): 166-178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332306

RESUMO

At the direction of The Guide and Use of Laboratory Animals, rodents in laboratory facilities are housed at ambient temperatures between 20°C and 26°C, which fall below their thermoneutral zone (TNZ). TNZ is identified as a range of ambient temperatures that allow an organism to regulate body temperature without employing additional thermoregulatory processes (e.g. metabolic heat production driven by norepinephrine), thus leading to mild, chronic cold stress. For mice, this chronic cold stress leads to increased serum levels of the catecholamine norepinephrine, which has direct effects on various immune cells and several aspects of immunity and inflammation. Here, we review several studies that have revealed that ambient temperature significantly impacts outcomes in various murine models of human diseases, particularly those in which the immune system plays a major role in its pathogenesis. The impact of ambient temperature on experimental outcomes raises questions regarding the clinical relevance of some murine models of human disease, since studies examining rodents housed within thermoneutral ambient temperatures revealed that rodent disease pathology more closely resembled that of humans. Unlike laboratory rodents, humans can modify their surroundings accordingly - by adjusting their clothing, the thermostat, or their physical activity - to live within the appropriate TNZ, offering a possible explanation for why many studies using murine models of human disease conducted at thermoneutrality better represent patient outcomes. Thus, it is strongly recommended that ambient housing temperature in such studies be consistently and accurately reported and recognized as an important experimental variable.

9.
Trends Mol Med ; 29(8): 589-598, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37330365

RESUMO

Core temperature stability is the result of a dynamically regulated balance of heat loss and gain, which is not reflected by a simple thermometer reading. One way in which these changes manifest is in perceived thermal comfort, 'feeling too cold' or 'feeling too hot', which can activate stress pathways. Unfortunately, there is surprisingly little preclinical research that tracks changes in perceived thermal comfort in response to either disease progression or various treatments. Without measuring this endpoint, there may be missed opportunities to evaluate disease and therapy outcomes in murine models of human disease. Here, we discuss the possibility that changes in thermal comfort in mice could be a useful and physiologically relevant measure of energy trade-offs required under various physiological or pathological conditions.


Assuntos
Pesquisa Biomédica , Regulação da Temperatura Corporal , Humanos , Animais , Camundongos , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa
10.
BMC Cancer ; 23(1): 572, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344761

RESUMO

BACKGROUND: Given the role of systematic inflammation in cancer progression, lymphocyte-monocyte ratio (LMR) from peripheral blood has been suggested as a biomarker to assess the extent of inflammation in several solid malignancies. However, the role of LMR as a prognostic factor in head and neck cancer was unclear in several meta-analyses, and there is a paucity of literature including patients in North America. We performed an observational cohort study to evaluate the association of LMR with survival outcomes in North American patients with head and neck cancer. METHODS: A single-institution, retrospective database was queried for patients with non-metastatic head and neck cancer who underwent definitive chemoradiation from June 2007 to April 2021 at the Roswell Park Comprehensive Cancer Center. Primary endpoints were overall survival (OS) and cancer-specific survival (CSS). The association of LMR with OS and CSS was examined using nonlinear Cox proportional hazard model using restricted cubic splines (RCS). Cox multivariable analysis (MVA) and Kaplan-Meier method were used to analyze OS and CSS. Pre-radiation LMR was then stratified into high and low based on its median value. Propensity scored matching was used to reduce the selection bias. RESULTS: A total of 476 patients met our criteria. Median follow up was 45.3 months (interquartile range 22.8-74.0). The nonlinear Cox regression model showed that low LMR was associated with worse OS and CSS in a continuous fashion without plateau for both OS and CSS. On Cox MVA, higher LMR as a continuous variable was associated with improved OS (adjusted hazard ratio [aHR] 0,90, 95% confidence interval [CI] 0.82-0.99, p = 0.03) and CSS (aHR 0.83, 95% CI 0.72-0.95, p = 0.009). The median value of LMR was 3.8. After propensity score matching, a total of 186 pairs were matched. Lower LMR than 3.8 remained to be associated with worse OS (HR 1.59, 95% CI 1.12-2.26, p = 0.009) and CSS (HR 1.68, 95% CI 1.08-2.63, p = 0.02). CONCLUSION: Low LMR, both as a continuous variable and dichotomized variable, was associated with worse OS and CSS. Further studies would be warranted to evaluate the role of such prognostic marker to tailor interventions.


Assuntos
Neoplasias de Cabeça e Pescoço , Monócitos , Humanos , Monócitos/patologia , Estudos Retrospectivos , Prognóstico , Linfócitos/patologia , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/patologia , Inflamação/patologia
11.
Clin Epigenetics ; 15(1): 68, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101222

RESUMO

BACKGROUND: Disadvantaged socioeconomic position (SEP), including lower educational attainment and household income, may influence cancer risk and outcomes. We hypothesized that DNA methylation could function as an intermediary epigenetic mechanism that internalizes and reflects the biological impact of SEP. METHODS: Based on tumor DNA methylation data from the Illumina 450 K array from 694 breast cancer patients in the Women's Circle of Health Study, we conducted an epigenome-wide analysis in relation to educational attainment and household income. Functional impact of the identified CpG sites was explored in silico using data from publicly available databases. RESULTS: We identified 25 CpG sites associated with household income at an array-wide significance level, but none with educational attainment. Two of the top CpG sites, cg00452016 and cg01667837, were in promoter regions of NNT and GPR37, respectively, with multiple epigenetic regulatory features identified in each region. NNT is involved in ß-adrenergic stress signaling and inflammatory responses, whereas GPR37 is involved in neurological and immune responses. For both loci, gene expression was inversely correlated to the levels of DNA methylation. The associations were consistent between Black and White women and did not differ by tumor estrogen receptor (ER) status. CONCLUSIONS: In a large breast cancer patient population, we discovered evidence of the significant biological impact of household income on the tumor DNA methylome, including genes in the ß-adrenergic stress and immune response pathways. Our findings support biological effects of socioeconomic status on tumor tissues, which might be relevant to cancer development and progression.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Feminino , Animais , Metilação de DNA , Epigenoma , Neoplasias da Mama/metabolismo , Estudo de Associação Genômica Ampla , Epigênese Genética , Neoplasias Mamárias Animais/genética , Escolaridade , Ilhas de CpG
12.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37080610

RESUMO

BACKGROUND: Studies evaluating peripheral patient samples show radiation can modulate immune responses, yet the biological changes in human tumors particularly at the cellular level remain largely unknown. Here, we address how radiation treatment shapes the immune compartment and interactions with cancer cells within renal cell carcinoma (RCC) patient tumors. METHODS: To identify how radiation shaped the immune compartment and potential immune interactions with tumor cells we evaluated RCC tumors from patients treated only with nephrectomy or with radiation followed by nephrectomy. Spectral flow cytometry using a 35-marker panel was performed on cell suspensions to evaluate protein expression within immune subsets. To reveal how radiation alters programming of immune populations and interactions with tumor cells, we examined transcriptional changes by single-cell RNA sequencing (scRNAseq). RESULTS: Spectral flow cytometry analysis revealed increased levels of early-activated as well as effector programmed cell death protein-1 (PD-1)+ CD8 T-cell subsets within irradiated tumors. Following quality control, scRNAseq of tumor samples from nephrectomy-only or radiation followed by nephrectomy-treated patients generated an atlas containing 34,626 total cells. Transcriptional analysis revealed increased transition from stem-like T-cell populations to effector T cells in irradiated tumors. Interferon (IFN) pathways, that are central to radiation-induced immunogenicity, were enriched in irradiated lymphoid, myeloid, and cancer cell populations. Focused cancer cell analysis showed enhanced antigen presentation and increased predicted TRAIL-mediated and IFN-mediated interactions between tumor cells and the same effector T-cell subsets increased by radiation. TRAIL and IFN pathways enriched in irradiated tumors were associated with survival in patients treated with immunotherapy. CONCLUSIONS: These findings identify the source of IFN enrichment within irradiated RCC and reveal heightened levels of PD-1+ CD8+ T-cell subsets and increased probability of interactions with tumor cells following standalone radiation treatment. This study provides a window into the irradiated tumor-immune microenvironment of patients and rationale for treatment combinations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Receptor de Morte Celular Programada 1/metabolismo , Subpopulações de Linfócitos T , Imunoterapia , Microambiente Tumoral
13.
Vet Comp Oncol ; 21(2): 159-165, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36876492

RESUMO

Recent studies have highlighted a key role played by the sympathetic nervous system (SNS) and adrenergic stress in mediating immune suppression associated with chronic inflammation in cancer and other diseases. The connection between chronic SNS activation, adrenergic stress and immune suppression is linked in part to the ability of catecholamines to stimulate the bone marrow release and differentiation of myeloid-derived suppressor cells (MDSC). Rodent model studies have revealed an important role for ß-adrenergic receptor signalling in suppression of cancer immunity in mice subjected to chronic stresses, including thermal stress. Importantly, therapeutic blockade of beta-adrenergic responses by drugs such as propranolol can partially reverse the generation and differentiation of MDSC, and partly restore tumour immunity. Clinical trials in both humans and dogs with cancer have demonstrated that propranolol blockade can improve responses to radiation therapy, cancer vaccines and immune checkpoint inhibitors. Thus, the SNS stress response has become an important new target to relieve immune suppression in cancer and other chronic inflammatory conditions.


Assuntos
Doenças do Cão , Células Supressoras Mieloides , Neoplasias , Humanos , Cães , Camundongos , Animais , Propranolol/farmacologia , Adrenérgicos , Doenças do Cão/terapia , Imunoterapia/veterinária , Neoplasias/terapia , Neoplasias/veterinária
14.
Cell Rep ; 42(3): 112250, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36924493

RESUMO

Abundant donor cytotoxic T cells that attack normal host organs remain a major problem for patients receiving allogeneic hematopoietic cell transplantation (allo-HCT). Despite an increase in our knowledge of the pathobiology of acute graft versus host disease (aGvHD), the mechanisms regulating the proliferation and function of donor T cells remain unclear. Here, we show that activated donor T cells express galectin-3 (Gal-3) after allo-HCT. In both major and minor histocompatibility-mismatched models of murine aGvHD, expression of Gal-3 is associated with decreased T cell activation and suppression of the secretion of effector cytokines, including IFN-γ and GM-CSF. Mechanistically, Gal-3 results in activation of NFAT signaling, which can induce T cell exhaustion. Gal-3 overexpression in human T cells prevents severe disease by suppressing cytotoxic T cells in xenogeneic aGvHD models. Together, these data identify the Gal-3-dependent regulatory pathway in donor T cells as a critical component of inflammation in aGvHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Linfócitos T , Animais , Humanos , Camundongos , Galectina 3/genética , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante Homólogo
15.
Biochimie ; 210: 71-81, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36693616

RESUMO

Preclinical mouse models are widely used for studying mechanisms of disease and responses to therapeutics, however there is concern about the lack of experimental reproducibility and failure to predict translational success. The gut microbiome has emerged as a regulator of metabolism and immunological processes in health and disease. The gut microbiome of mice differs by supplier and this affects experimental outcomes. We have previously reported that the mandated, mildly cool housing temperature for research mice (22°-26 °C) induces chronic adrenergic stress which suppresses anti-tumor immunity and promotes tumor growth compared to thermoneutral housing (30 °C). Therefore, we wondered how housing temperature affects the microbiome. Here, we demonstrate that the gut microbiome of BALB/c mice is easily modulated by a few degrees difference in temperature. Our results reveal significant differences between the gut microbiome of mice housed at 22°-23 °C vs. 30 °C. Although the genera vary, we consistently observed an enrichment of members of the family Lachnospiraceae when mice are housed at 22°-23 °C. These findings demonstrate that adrenergic stress and need for increased energy harvest to support thermogenesis, in addition to other factors such as diet, modulates the gut microbiome and this could be one mechanism by which housing temperature affects experimental outcomes. Additionally, tumor growth in mice housed at 30 °C also increases the proportion of Lachnospiraceae. The idea that stress can alter the gut microbiome and cause differences in experimental outcomes is applicable to mouse studies in general and is a variable that has significant potential to affect experimental reproducibility.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Animais , Camundongos , Temperatura , Reprodutibilidade dos Testes , Abrigo para Animais , Adrenérgicos
16.
Int J Radiat Oncol Biol Phys ; 115(3): 733-745, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202180

RESUMO

PURPOSE: Many solid tumors present with perineural invasion (PNI), and innervation correlates with worsened prognosis. The effects that commonly administered therapies such as radiation therapy (RT) have on PNI status remain unknown. We investigated the contribution of RT on the nervous system and elucidated the implications that increased nerve signaling can have on tumor burden using our previously developed orthotopic murine model of rectal cancer (RC) and our targeted and clinically relevant short-course RT (SCRT) regimen. METHODS: Medical charts for patients with RC treated at the Wilmot Cancer Institute were obtained and PNI status was analyzed. Human data were accompanied by an orthotopic murine model of RC. Briefly, luciferase-expressing murine colon-38 (MC38-luc) tumor cells were injected orthotopically into the rectal wall of C57BL6 mice. Targeted SCRT (5 gray (Gy) per fraction for 5 consecutive fractions) was administered to the tumor. Intratumoral innervation was determined by immunohistochemistry (IHC), local norepinephrine (NE) concentration was quantified by enzyme-linked immunosorbent assay (ELISA), and ß2-adrenergic receptor (B2AR) expression was assessed by flow cytometry. Chronic NE signaling was mirrored by daily isoproterenol treatment, and the effect on tumor burden was determined by overall survival, presence of metastatic lesions, and tumor size. Isoproterenol signaling was inhibited by administration of propranolol. RESULTS: Human RC patients with PNI have decreased overall survival compared with patients without PNI. In our mouse model, SCRT induced the expression of genes involved in neurogenesis, increased local NE secretion, and upregulated B2AR expression. Treating mice with isoproterenol resulted in decreased overall survival, increased rate of metastasis, and reduced SCRT efficacy. Interestingly, the isoproterenol-induced decrease in SCRT efficacy could be abrogated by blocking the BAR through the use of propranolol, suggesting a direct role of BAR stimulation on impairing SCRT responses. CONCLUSIONS: Our results indicate that while SCRT is a valuable treatment, it is accompanied by adverse effects on the nervous system that may impede the efficacy of therapy and promote tumor burden. Therefore, we could speculate that therapies aimed at targeting this signaling cascade or impairing nerve growth in combination with SCRT may prove beneficial in future cancer treatment.


Assuntos
Propranolol , Neoplasias Retais , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Isoproterenol , Propranolol/farmacologia , Camundongos Endogâmicos C57BL , Neoplasias Retais/patologia
17.
Wiad Lek ; 76(12): 2543-2555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38290016

RESUMO

Marie Sklodowska-Curie Symposia on Cancer Research and Care (MSCS-CRC) promote collaborations between cancer researchers and care providers in the United States, Canada and Central and Eastern European Countries (CEEC), to accelerate the development of new cancer therapies, advance early detection and prevention, increase cancer awareness, and improve cancer care and the quality of life of patients and their families. The third edition of MSCS-CRC, held at Roswell Park Comprehensive Cancer Center, Buffalo, NY, in September 2023, brought together 137 participants from 20 academic institutions in the US, Poland, Ukraine, Lithuania, Croatia and Hungary, together with 16 biotech and pharma entities. The key areas of collaborative opportunity identified during the meeting are a) creating of a database of available collaborative projects in the areas of early-phase clinical trials, preclinical development, and identification of early biomarkers; b) promoting awareness of cancer risks and efforts at cancer prevention; c) laboratory and clinical training; and d) sharing experience in cost-effective delivery of cancer care and improving the quality of life of cancer patients and their families. Examples of ongoing international collaborations in the above areas were discussed. Participation of the representatives of the Warsaw-based Medical Research Agency, National Cancer Institute (NCI) of the United States, National Cancer Research Institutes of Poland and Lithuania, New York State Empire State Development, Ministry of Health of Ukraine and Translational Research Cancer Center Consortium of 13 cancer centers from the US and Canada, facilitated the discussion of available governmental and non-governmental funding initiatives in the above areas.


Assuntos
Pesquisa Biomédica , Neoplasias , Humanos , Estados Unidos , New York , Qualidade de Vida , Neoplasias/terapia , Polônia
18.
Clin Transl Med ; 12(8): e996, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994413

RESUMO

BACKGROUND: Vascularized composite tissue allotransplantation (VCA) to replace limbs or faces damaged beyond repair is now possible. The resulting clear benefit to quality of life is a compelling reason to attempt this complex procedure. Unfortunately, the high doses of immunosuppressive drugs required to protect this type of allograft result in significant morbidity and mortality giving rise to ethical concerns about performing this surgery in patients with non-life-threatening conditions. Here we tested whether we could suppress anti-graft immune activity by using a safe ß2 -adrenergic receptor (AR) agonist, terbutaline, to mimic the natural immune suppression generated by nervous system-induced signalling through AR. METHODS: A heterotopic hind limb transplantation model was used with C57BL/6 (H-2b) as recipients and BALB/c (H-2d) mice as donors. To test the modulation of the immune response, graft survival was investigated after daily intraperitoneal injection of ß2 -AR agonist with and without tacrolimus. Analyses of immune compositions and quantification of pro-inflammatory cytokines were performed to gauge functional immunomodulation. The contributions to allograft survival of ß2 -AR signalling in donor and recipient tissue were investigated with ß2 -AR-/- strains. RESULTS: Treatment with the ß2 -AR agonist delayed VCA rejection, even with a subtherapeutic dose of tacrolimus. ß2 -AR agonist decreased T-cell infiltration into the transplanted grafts and decreased memory T-cell populations in recipient's circulation. In addition, decreased levels of inflammatory cytokines (IFN-γ, IL-6, TNF-α, CXCL-1/10 and CCL3/4/5/7) were detected following ß2 -AR agonist treatment, and there was a decreased expression of ICAM-1 and vascular cell adhesion molecule-1 in donor stromal cells. CONCLUSIONS: ß2 -AR agonist can be used safely to mimic the natural suppression of immune responses, which occurs during adrenergic stress-signalling and thereby can be used in combination regimens to reduce the dose needed of toxic immunosuppressive drugs such as tacrolimus. This strategy can be further evaluated for feasibility in the clinic.


Assuntos
Rejeição de Enxerto , Tacrolimo , Adrenérgicos , Animais , Citocinas/metabolismo , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
19.
Adv Biol (Weinh) ; 6(9): e2200031, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35652494

RESUMO

Circadian rhythm disruption is implicated in the initiation and progression of many diseases, including cancer. External stimuli, such as sunlight, serve to synchronize physiological processes and cellular functions to a 24-h cycle. The immune system is controlled by circadian rhythms, and perturbation of these rhythms can potentially alter the immune response to infections and tumors. The effect of circadian rhythm disruption on the immune response to tumors remains unclear. Specifically, the effects of circadian disruption (CD) on immunosuppressive cell types within the tumor, such as myeloid-derived suppressor cells (MDSCs), are unknown. In this study, a shifting lighting schedule is used to disrupt the circadian rhythm of mice. After acclimation to lighting schedules, mice are inoculated with 4T1 or B16-F10 tumors. Tumor growth is increased in mice housed under circadian disrupting lighting conditions compared to standard lighting conditions. Analysis of immune populations within the spleen and tumor shows an increased accumulation of MDSCs within these tissues, suggesting that MDSC mediated immunosuppression plays a role in the enhanced tumor growth caused by circadian disruption. This paves the way for future studies of the effects of CD on immunosuppression in cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias , Animais , Ritmo Circadiano , Tolerância Imunológica , Terapia de Imunossupressão , Camundongos , Neoplasias/metabolismo
20.
Cancers (Basel) ; 14(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626144

RESUMO

Over the past two decades, multiple studies have demonstrated the important role that the autonomic nervous system (ANS) plays in tumorigenesis and cancer progression. However, the mechanisms by which this process occurs have only recently begun to be elucidated. Further, the extent of autonomic innervation in various cancer types and its effects on tumor molecular, immunological, and histopathological features, as well as on patient outcomes, are not yet fully characterized. In this study, we analyzed intratumoral ANS gene expression signatures, including overall intratumoral neuron growth and sympathetic and parasympathetic markers, across 32 cancer types using tumor transcriptomic and clinical annotation data available from The Cancer Genome Atlas (TCGA). Our analysis revealed wide variations in intratumoral ANS expression both within and across cancer types. The association of ANS signatures with tumor histopathological characteristics and survival outcomes also varied by cancer type. We found intratumoral ANS expression to be commonly correlated with angiogenesis, TGF-ß signaling, and immunosuppression in the tumor microenvironment of many cancer types, which provide mechanistic insights into the involvement of intratumoral innervation in cancer development and progression. Our findings suggest that the potential benefits of cancer therapies targeting ß-adrenergic receptor-mediated stress signaling pathways are likely dependent on cancer type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...