Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 15(2): 164-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26641019

RESUMO

Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

2.
J Am Chem Soc ; 136(40): 14215-22, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25203521

RESUMO

A major challenge for realizing quantum computation is finding suitable systems to embody quantum bits (qubits) and quantum gates (qugates) in a robust and scalable architecture. An emerging bottom-up approach uses the electronic spins of lanthanides. Universal qugates may then be engineered by arranging in a molecule two interacting and different lanthanide ions. Preparing heterometallic lanthanide species is, however, extremely challenging. We have discovered a method to obtain [LnLn'] complexes with the appropriate requirements. Compound [CeEr] is deemed to represent an ideal situation. Both ions have a doubly degenerate magnetic ground state and can be addressed individually. Their isotopes have mainly zero nuclear spin, which enhances the electronic spin coherence. The analogues [Ce2], [Er2], [CeY], and [LaEr] have also been prepared to assist in showing that [CeEr] meets the qugate requirements, as revealed through magnetic susceptibility, specific heat, and EPR. Molecules could now be used for quantum information processing.

3.
Chemistry ; 20(6): 1669-76, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24327555

RESUMO

The insertion of the single-molecule magnet (SMM) [Mn(III)(salen)(H2O)]2(2+) (salen(2-) = N,N'-ethylenebis-(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [Mn(III)(salen)(H2O)]2[Mn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn(III)(salen)(H2O)]2[Zn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (2) and [In(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]⋅(H2O)0.25⋅(CH3OH)0.25⋅(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of Cr(III) affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic Mn(II) Cr(III) network is observed at Tc = 5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3. In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near-reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions.


Assuntos
Cromo/química , Etilenodiaminas/química , Imãs/química , Manganês/química , Compostos Organometálicos/química , Oxalatos/química , Cristalografia por Raios X , Modelos Moleculares
4.
Nanoscale ; 5(24): 12565-73, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24172940

RESUMO

Direct measurements of the linear ac susceptibility and magnetic relaxation of a few Mn12 monolayers deposited on a µ-SQUID sensor are reported. In order to integrate the molecules into the device, DPN has been the technique of choice. It enabled the structuration of the molecules on the most sensitive areas of the sensor without the need for any previous functionalization of the molecule or the substrate, while controlling the number of molecular units deposited on each array. The measurements reveal that their characteristic SMM behaviour is lost, a fact that is attributed to molecular distortions originated by the strong surface tensions arising at the molecular interphases.

5.
Inorg Chem ; 49(15): 6784-6, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20604562

RESUMO

A new ligand has been synthesized with the aim of favoring distinct coordination environments within lanthanide polynuclear complexes. It has led to the formation of three unsymmetrical [Ln(III)(2)] (Ln = Gd, Tb, Eu) complexes, exhibiting weak antiferromagnetic coupling and, for Eu and Tb, high single-ion magnetic anisotropy. All of these attributes are necessary for these clusters to behave as possible 2qubit quantum gates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...