Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microscopy (Oxf) ; 70(5): 399-414, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34283242

RESUMO

Here we describe the development and application of miniature integrated microscopes (miniscopes) paired with microendoscopes that allow for the visualization and manipulation of neural circuits in superficial and subcortical brain regions in freely behaving animals. Over the past decade the miniscope platform has expanded to include simultaneous optogenetic capabilities, electrically-tunable lenses that enable multi-plane imaging, color-corrected optics, and an integrated data acquisition platform that streamlines multimodal experiments. Miniscopes have given researchers an unprecedented ability to monitor hundreds to thousands of genetically-defined neurons from weeks to months in both healthy and diseased animal brains. Sophisticated algorithms that take advantage of constrained matrix factorization allow for background estimation and reliable cell identification, greatly improving the reliability and scalability of source extraction for large imaging datasets. Data generated from miniscopes have empowered researchers to investigate the neural circuit underpinnings of a wide array of behaviors that cannot be studied under head-fixed conditions, such as sleep, reward seeking, learning and memory, social behaviors, and feeding. Importantly, the miniscope has broadened our understanding of how neural circuits can go awry in animal models of progressive neurological disorders, such as Parkinson's disease. Continued miniscope development, including the ability to record from multiple populations of cells simultaneously, along with continued multimodal integration of techniques such as electrophysiology, will allow for deeper understanding into the neural circuits that underlie complex and naturalistic behavior.


Assuntos
Encéfalo , Microscopia/instrumentação , Animais , Encéfalo/diagnóstico por imagem , Miniaturização , Reprodutibilidade dos Testes
2.
J Neurosci ; 40(11): 2282-2295, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32024781

RESUMO

Oxytocin (OT) is critical for the expression of social behavior across a wide array of species; however, the role of this system in the encoding of socially relevant information is not well understood. In the present study, we show that chemogenetic activation of OT neurons within the paraventricular nucleus of the hypothalamus (PVH) of male mice (OT-Ires-Cre) enhanced social investigation during a social choice test, while chemogenetic inhibition of these neurons abolished typical social preferences. These data suggest that activation of the OT system is necessary to direct behavior preferentially toward social stimuli. To determine whether the presence of a social stimulus is sufficient to induce activation of PVH-OT neurons, we performed the first definitive recording of OT neurons in awake mice using two-photon calcium imaging. These recordings demonstrate that social stimuli activate PVH-OT neurons and that these neurons differentially encode social and nonsocial stimuli, suggesting that PVH-OT neurons may act to convey social salience of environmental stimuli. Finally, an attenuation of social salience is associated with social disorders, such as autism. We therefore also examined possible OT system dysfunction in a mouse model of autism, Shank3b knock-out (KO) mice. Male Shank3b KO mice showed a marked reduction in PVH-OT neuron number and administration of an OT receptor agonist improved social deficits. Overall, these data suggest that the presence of a social stimulus induces activation of the PVH-OT neurons to promote adaptive social behavior responses.SIGNIFICANCE STATEMENT Although the oxytocin (OT) system is well known to regulate a diverse array of social behaviors, the mechanism in which OT acts to promote the appropriate social response is poorly understood. One hypothesis is that the presence of social conspecifics activates the OT system to generate an adaptive social response. Here, we selectively recorded from OT neurons in the paraventricular hypothalamic nucleus (PVH) to show that social stimulus exposure indeed induces activation of the OT system. We also show that activation of the OT system is necessary to promote social behavior and that mice with abnormal social behavior have reduced numbers of PVH-OT neurons. Finally, aberrant social behavior in these mice was rescued by administration of an OT receptor agonist.


Assuntos
Neurônios/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Comportamento Social , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Apetitivo/efeitos dos fármacos , Comportamento Apetitivo/fisiologia , Transtorno Autístico/fisiopatologia , Benzodiazepinas/farmacologia , Sinalização do Cálcio , Clozapina/farmacologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Genes Reporter , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Ocitocina/análise , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Técnicas de Patch-Clamp , Pirazóis/farmacologia , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/fisiologia , Vigília
3.
Elife ; 72018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29469809

RESUMO

In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we describe a new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest. We compared the proposed method against previous independent components analysis and constrained nonnegative matrix factorization approaches. On both simulated and experimental data recorded from mice, our method substantially improved the quality of extracted cellular signals and detected more well-isolated neural signals, especially in noisy data regimes. These advances can in turn significantly enhance the statistical power of downstream analyses, and ultimately improve scientific conclusions derived from microendoscopic data.


Assuntos
Encéfalo/fisiologia , Sinalização do Cálcio , Endoscopia/métodos , Processamento de Imagem Assistida por Computador/métodos , Neurônios/fisiologia , Gravação em Vídeo/métodos , Animais , Camundongos
4.
Nature ; 543(7643): 103-107, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28225752

RESUMO

The prefrontal cortex is a critical neuroanatomical hub for controlling motivated behaviours across mammalian species. In addition to intra-cortical connectivity, prefrontal projection neurons innervate subcortical structures that contribute to reward-seeking behaviours, such as the ventral striatum and midline thalamus. While connectivity among these structures contributes to appetitive behaviours, how projection-specific prefrontal neurons encode reward-relevant information to guide reward seeking is unknown. Here we use in vivo two-photon calcium imaging to monitor the activity of dorsomedial prefrontal neurons in mice during an appetitive Pavlovian conditioning task. At the population level, these neurons display diverse activity patterns during the presentation of reward-predictive cues. However, recordings from prefrontal neurons with resolved projection targets reveal that individual corticostriatal neurons show response tuning to reward-predictive cues, such that excitatory cue responses are amplified across learning. By contrast, corticothalamic neurons gradually develop new, primarily inhibitory responses to reward-predictive cues across learning. Furthermore, bidirectional optogenetic manipulation of these neurons reveals that stimulation of corticostriatal neurons promotes conditioned reward-seeking behaviour after learning, while activity in corticothalamic neurons suppresses both the acquisition and expression of conditioned reward seeking. These data show how prefrontal circuitry can dynamically control reward-seeking behaviour through the opposing activities of projection-specific cell populations.


Assuntos
Comportamento Apetitivo/fisiologia , Sinais (Psicologia) , Vias Neurais , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Recompensa , Animais , Cálcio/análise , Condicionamento Clássico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Molecular , Plasticidade Neuronal , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Tálamo/citologia , Tálamo/fisiologia
5.
Elife ; 52016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27371827

RESUMO

Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds.


Assuntos
Dopamina/metabolismo , Dinorfinas/biossíntese , Núcleo Accumbens/fisiologia , Ligação do Par , Receptores de Dopamina D1/biossíntese , Animais , Arvicolinae
6.
Nat Protoc ; 11(3): 566-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26914316

RESUMO

Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, owing to the light-scattering properties of the brain, as well as the size and rigidity of traditional imaging technology, in vivo calcium imaging has been limited to superficial brain structures during head-fixed behavioral tasks. These limitations can now be circumvented by using miniature, integrated microscopes in conjunction with an implantable microendoscopic lens to guide light into and out of the brain, thus permitting optical access to deep brain (or superficial) neural ensembles during naturalistic behaviors. Here we describe steps to conduct such imaging studies using mice. However, we anticipate that the protocol can be easily adapted for use in other small vertebrates. Successful completion of this protocol will permit cellular imaging of neuronal activity and the generation of data sets with sufficient statistical power to correlate neural activity with stimulus presentation, physiological state and other aspects of complex behavioral tasks. This protocol takes 6-11 weeks to complete.


Assuntos
Encéfalo/fisiologia , Cálcio/análise , Microscopia/instrumentação , Rede Nervosa/fisiologia , Neurônios/citologia , Imagem Óptica/instrumentação , Animais , Encéfalo/ultraestrutura , Cálcio/metabolismo , Endoscópios , Desenho de Equipamento , Masculino , Camundongos , Miniaturização , Rede Nervosa/ultraestrutura , Neurônios/metabolismo , Próteses e Implantes
7.
Cell ; 160(3): 516-27, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635459

RESUMO

Optimally orchestrating complex behavioral states, such as the pursuit and consumption of food, is critical for an organism's survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here, we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, whereas genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH), and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level.


Assuntos
Comportamento Apetitivo , Comportamento Consumatório , Hipotálamo/fisiologia , Animais , Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Camundongos , Motivação , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Hormônios Hipofisários/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Integr Zool ; 9(3): 280-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24952968

RESUMO

Prairie voles (Microtus ochrogaster) are a socially monogamous rodent species and their cooperative behaviors require extensive communication between conspecifics. Rodents use ultrasonic vocalizations (USVs) to communicate and because a prairie vole breeder pair must engage in extensive cooperation for successful reproduction, auditory communication may be critical for this species. Therefore, we sought to characterize USVs in adult male and female prairie voles, and to determine how these calls are influenced by social context, salient social stimuli and the psychostimulant drug of abuse amphetamine (AMPH). Here, we characterize prairie vole USVs by showing the range of frequencies of prairie vole USVs, the proportion of various call types, how these call types compare between males and females, and how they are influenced by social stimulation and AMPH. AMPH caused a robust increase in the number of USVs in both males and females and there was a dramatic sex difference in the complexity of call structures of AMPH-induced USVs, with males emitting more elaborate calls. Moreover, we show that novel (i.e. salient) social cues evoked differential increases in USVs across sex, with males showing a much more robust increase in USV production, both with respect to the frequency and complexity of USV production. Exposure to an estrous female in particular caused an extraordinary increase in USVs in male subjects. These data suggest that USVs may be a useful measure of social motivation in this species, including how social behaviors can be impacted by drugs of abuse.


Assuntos
Anfetamina/metabolismo , Arvicolinae/fisiologia , Estimulantes do Sistema Nervoso Central/metabolismo , Comportamento Social , Vocalização Animal , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Feminino , Masculino , Estimulação Luminosa , Fatores Sexuais , Vocalização Animal/efeitos dos fármacos
10.
J Neurosci ; 33(21): 9140-9, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699524

RESUMO

The prairie vole is a socially monogamous rodent that is an excellent animal model for studies of the neurobiology of social attachment. Such studies have demonstrated that activation of reward circuitry during social interactions facilitates pair bond formation. Within this circuitry, µ-opioid receptors (MORs) modulate naturally rewarding behavior in an anatomically segregated manner; MORs located throughout the striatum (dorsal striatum, NAc core, and the entire NAc shell) are implicated in general motivational processes, whereas those located specifically within the dorsomedial NAc shell mediate positive hedonics (and are referred to as a "hedonic hotspot"). The purpose of the present study was to determine whether MORs within these distinct subregions differentially mediate pair bond formation. We first used receptor autoradiography to compare MOR binding densities between these regions. MOR binding was significantly higher in the NAc core and dorsomedial NAc shell compared with the ventral NAc shell. We next used partner preference testing to determine whether MORs within these subregions differentially mediate pair bonding. Blockade of MORs using 1 or 3 µg of H-d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2 within the dorsal striatum decreased mating during the cohabitation period and inhibited partner preference formation. In contrast, blockade of MORs within dorsomedial NAc shell inhibited partner preference formation without effecting mating behavior, whereas other regions were not involved. Thus, MORs within the dorsal striatum mediate partner preference formation via impairment of mating, whereas those in the dorsomedial NAc shell appear to mediate pair bond formation through the positive hedonics associated with mating.


Assuntos
Corpo Estriado/fisiologia , Ligação do Par , Receptores Opioides mu/metabolismo , Recompensa , Animais , Arvicolinae , Corpo Estriado/anatomia & histologia , Corpo Estriado/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos
11.
Rev Neurosci ; 24(1): 51-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23314526

RESUMO

Social bonds are important for human health and well-being, and a crucial component of these bonds is the ability to maintain a bond once it has been formed. Importantly, although bond maintenance is required for social attachments, very little is known about the neural mechanisms that mediate this behavior. Recently, laboratory studies utilizing the socially monogamous prairie vole (an excellent animal model for the neurobiology of selective social attachment), have allowed the neural correlates of selective social attachment to begin to unfold. These studies have identified that the activation of both motivational and hedonic processing systems, which mediate other natural rewards, is also important for mediating social behaviors that are characteristic of an established pair bond. These social behaviors include appetitive and positive social interactions with a potential mating partner in sexually naïve prairie voles, the avoidance of novel conspecifics (and sometimes aggressive rejection) that characterizes the established pair bond and, finally, an aversion towards partner separation. The following review will discuss how a balance between opposing endogenous opioid systems - positive (mu-opiod receptors) and aversive (kappa-opioid receptors) - provide essential hedonic signaling that guides socially motivated behaviors.


Assuntos
Encéfalo/fisiologia , Motivação/fisiologia , Apego ao Objeto , Ligação do Par , Comportamento Social , Animais , Evolução Biológica , Encéfalo/anatomia & histologia , Humanos , Modelos Animais
12.
J Neurosci ; 32(20): 6771-84, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22593047

RESUMO

The prairie vole is a socially monogamous species in which breeder pairs typically show strong and selective pair bonds. The establishment of a pair bond is associated with a behavioral transition from general affiliation to aggressive rejection of novel conspecifics. This "selective aggression" is indicative of mate guarding that is necessary to maintain the initial pair bond. In the laboratory, the neurobiology of this behavior is studied using resident-intruder testing. Although it is well established that social behaviors in other species are mediated by endogenous opioid systems, opiate regulation of pair bond maintenance has never been studied. Here, we used resident-intruder testing to determine whether endogenous opioids within brain motivational circuitry mediate selective aggression in prairie voles. We first show that peripheral blockade of κ-opioid receptors with the antagonist norbinaltorphimine (nor-BNI; 100 mg/kg), but not with the preferential µ-opioid receptor antagonist naloxone (1, 10, or 30 mg/kg), decreased selective aggression in males. We then provide the first comprehensive characterization of κ- and µ-opioid receptors in the prairie vole brain. Finally, we demonstrate that blockade of κ-opioid receptors (500 ng nor-BNI) within the nucleus accumbens (NAc) shell abolishes selective aggression in both sexes, but blockade of these receptors within the NAc core enhances this behavior specifically in females. Blockade of κ-opioid receptors within the ventral pallidum or µ-opioid receptors with the specific µ-opioid receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-PenThr-NH2 (1 ng CTAP) within the NAc shell had no effect in either sex. Thus, κ-opioid receptors within the NAc shell mediate aversive social motivation that is critical for pair bond maintenance.


Assuntos
Núcleo Accumbens/fisiologia , Ligação do Par , Receptores Opioides kappa/fisiologia , Agressão/efeitos dos fármacos , Agressão/fisiologia , Animais , Arvicolinae , Autorradiografia/métodos , Encéfalo/metabolismo , Corticosterona/sangue , Relação Dose-Resposta a Droga , Feminino , Masculino , Microinjeções , Naloxona/farmacologia , Naltrexona/administração & dosagem , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Receptores Opioides mu/fisiologia , Caracteres Sexuais , Somatostatina/administração & dosagem , Somatostatina/farmacologia , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...