Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 267: 116228, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354521

RESUMO

In quest for new photosensitizers (PSs) with remarkable antitumor photodynamic efficacy, a series of fifteen quaternary ammonium (QA) cations conjugated 5,15-diaryltetranaphtho[2,3]porphyrins (Ar2TNPs) was synthesized and evaluated in vitro and in vivo to understand how variations in the length of the alkoxy group and the kind of QA cations on meso-phenyl influence the photodynamic antitumor activity. All final compounds (I1-5, II1-5, and III1-5) exhibited robust absorption at 729 nm with significant bathochromic shift and high molar extinction coefficients (1.16 × 105-1.41 × 105 M-1 cm-1), as well as other absorptions at 445, 475, 651, and 714 nm for tumors and other diseases of diverse sizes and depths. Upon exposure to 474 nm light, they displayed intense fluorescence emission with fluorescence quantum yields ranging from 0.32 to 0.43. The ability to generate reactive oxygen species (ROS) was also quantified, attaining a maximum rate of up to 0.0961 s-1. The IC50 values of all the compounds regarding phototoxicity and dark toxicity were determined using KYSE-150 cells, and the phototoxicity indices were calculated. Among these compounds, III1 demonstrated the highest phototoxic index with minimal dark toxicity, and suppressed successfully the growth of esophageal carcinoma xenograft with favorable tolerance in vivo. Furthermore, the histological results showed III1-mediated PDT had a significant cytotoxic effect on the tumor. These outcomes underscore the potential of III1 as a highly effective antitumor photosensitizer drug in photodynamic therapy (PDT).


Assuntos
Compostos de Amônio , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Cátions
2.
World J Clin Cases ; 11(2): 322-331, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36686356

RESUMO

The review focuses on the most important areas of cell therapy for spinal cord injuries. Olfactory mucosa cells are promising for transplantation. Obtaining these cells is safe for patients. The use of olfactory mucosa cells is effective in restoring motor function due to the remyelination and regeneration of axons after spinal cord injuries. These cells express neurotrophic factors that play an important role in the functional recovery of nerve tissue after spinal cord injuries. In addition, it is possible to increase the content of neurotrophic factors, at the site of injury, exogenously by the direct injection of neurotrophic factors or their delivery using gene therapy. The advantages of olfactory mucosa cells, in combination with neurotrophic factors, open up wide possibilities for their application in three-dimensional and four-dimensional bioprinting technology treating spinal cord injuries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...