Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(40): 21832-21840, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773976

RESUMO

The light-gated ion channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) is the most frequently used optogenetic tool in neurosciences. However, the precise molecular mechanism of the channel opening and the correlation among retinal isomerization, the photocycle, and the channel activity of the protein are missing. Here, we present electrophysiological and spectroscopic investigations on the R120H variant of CrChR2. R120 is a key residue in an extended network linking the retinal chromophore to several gates of the ion channel. We show that despite the deficient channel activity, the photocycle of the variant is intact. In a comparative study for R120H and the wild type, we resolve the vibrational changes in the spectral range of the retinal and amide I bands across the time range from femtoseconds to seconds. Analysis of the amide I mode reveals a significant impairment of the ultrafast protein response after retinal excitation. We conclude that channel opening in CrChR2 is prepared immediately after retinal excitation. Additionally, chromophore isomerization is essential for both photocycle and channel activities, although both processes can occur independently.

2.
J Am Chem Soc ; 140(31): 9899-9903, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30036055

RESUMO

Channelrhodopsins (ChRs) are light-gated cation channels. In spite of their wide use to activate neurons with light, the photocurrents of ChRs rapidly decay in intensity under both continuous illumination and fast trains of light pulses, broadly referred to as desensitization. This undesirable phenomenon has been explained by two interconnected photocycles, each of them containing a nonconductive dark state (D1 and D2) and a conductive state (O1 and O2). While the D1 and O1 states correspond to the dark-state and P3520 intermediate of the primary all- trans photocycle of ChR2, the molecular identity of D2 and O2 remains unclear. We show that P4480, the last intermediate of the all- trans photocycle, is photoactive. Its photocycle, characterized by time-resolved UV/vis spectroscopy, contains a red-shifted intermediate, I3530. Our results indicate that the D2 and O2 states correspond to the P4480 and I3530 intermediates, connecting desensitization of ChR2 with the photochemical properties of the P4480 intermediate.


Assuntos
Channelrhodopsins/metabolismo , Luz , Neurônios/metabolismo , Channelrhodopsins/efeitos da radiação , Cinética , Neurônios/efeitos da radiação
3.
Phys Chem Chem Phys ; 20(5): 3184-3199, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29057415

RESUMO

Microbial rhodopsins are well known as versatile and ubiquitous light-driven ion transporters and photosensors. While the proton transport mechanism has been studied in great detail, much less is known about various modes of anion transport. Until recently, only two main groups of light-driven anion pumps were known, archaeal halorhodopsins (HRs) and bacterial chloride pumps (known as ClRs or NTQs). Last year, another group of cyanobacterial anion pumps with a very distinct primary structure was reported. Here, we studied the chloride-transporting photocycle of a representative of this new group, Mastigocladopsis repens rhodopsin (MastR), using time-resolved spectroscopy in the infrared and visible ranges and site-directed mutagenesis. We found that, in accordance with its unique amino acid sequence containing many polar residues in the transmembrane region of the protein, its photocycle features a number of unusual molecular events not known for other anion-pumping rhodopsins. It appears that light-driven chloride ion transfers by MastR are coupled with translocation of protons and water molecules as well as perturbation of several polar sidechains. Of particular interest is transient deprotonation of Asp-85, homologous to the cytoplasmic proton donor of light-driven proton pumps (such as Asp-96 of bacteriorhodopsin), which may serve as a regulatory mechanism.


Assuntos
Cloretos/metabolismo , Cianobactérias/metabolismo , Rodopsinas Microbianas/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons/efeitos da radiação , Cinética , Luz , Mutagênese Sítio-Dirigida , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Rodopsinas Microbianas/classificação , Rodopsinas Microbianas/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
4.
Proc Natl Acad Sci U S A ; 112(43): E5796-804, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460012

RESUMO

The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 µs (30%) and 200 µs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.


Assuntos
Evolução Biológica , Canais Iônicos/fisiologia , Luz , Água/química , Íons
5.
Biophys J ; 109(2): 287-97, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200864

RESUMO

Channelrhodopsins (ChRs) are light-gated cation channels. After blue-light excitation, the protein undergoes a photocycle with different intermediates. Here, we have recorded transient absorbance changes of ChR2 from Chlamydomonas reinhardtii in the visible and infrared regions with nanosecond time resolution, the latter being accomplished using tunable quantum cascade lasers. Because proton transfer reactions play a key role in channel gating, we determined vibrational as well as kinetic isotope effects (VIEs and KIEs) of carboxylic groups of various key aspartic and glutamic acid residues by monitoring their C=O stretching vibrations in H2O and in D2O. D156 exhibits a substantial KIE (>2) in its deprotonation and reprotonation, which substantiates its role as the internal proton donor to the retinal Schiff base. The unusual VIE of D156, upshifted from 1736 cm(-1) to 1738 cm(-1) in D2O, was scrutinized by studying the D156E variant. The C=O stretch of E156 shifted down by 8 cm(-1) in D2O, providing evidence for the accessibility of the carboxylic group. The C=O stretching band of E90 exhibits a VIE of 9 cm(-1) and a KIE of ∼2 for the de- and the reprotonation reactions during the lifetime of the late desensitized state. The KIE of 1 determined in the time range from 20 ns to 5 ms is incompatible with early deprotonation of E90.


Assuntos
Proteínas de Transporte/química , Prótons , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chlamydomonas reinhardtii , Óxido de Deutério/química , Cinética , Mutação , Fotólise , Pichia , Análise Espectral , Vibração , Água/química
6.
J Am Chem Soc ; 137(5): 1850-61, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25584873

RESUMO

Light-gated ion permeation by channelrhodopsin-2 (ChR2) relies on the photoisomerization of the retinal chromophore and the subsequent photocycle, leading to the formation (on-gating) and decay (off-gating) of the conductive state. Here, we have analyzed the photocycle of a fast-cycling ChR2 variant (E123T mutation, also known as ChETA), by time-resolved UV/vis, step-scan FT-IR, and tunable quantum cascade laser IR spectroscopies with nanosecond resolution. Pre-gating conformational changes rise with a half-life of 200 ns, silent to UV/vis but detected by IR spectroscopy. They involve changes in the peptide backbone and in the H-bond of the side chain of the critical residue D156. Thus, the P1(500) intermediate must be separated into early and late states. Light-adapted ChR2 contains a mixture of all-trans and 13-cis retinal in a 70:30 ratio which are both photoactive. Analysis of ethylenic and fingerprint vibrations of retinal provides evidence that the 13-cis photocycle recovers in 1 ms. This recovery is faster than channel off-gating and most of the proton transfer reactions, implying that the 13-cis photocycle is of minor functional relevance for ChR2.


Assuntos
Mutação , Rodopsina/química , Rodopsina/metabolismo , Escuridão , Diterpenos , Cinética , Fotólise , Conformação Proteica , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Fatores de Tempo , Vibração
7.
Proc Natl Acad Sci U S A ; 110(14): E1273-81, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23509282

RESUMO

The discovery of the light-gated ion channel channelrhodopsin (ChR) set the stage for the novel field of optogenetics, where cellular processes are controlled by light. However, the underlying molecular mechanism of light-induced cation permeation in ChR2 remains unknown. Here, we have traced the structural changes of ChR2 by time-resolved FTIR spectroscopy, complemented by functional electrophysiological measurements. We have resolved the vibrational changes associated with the open states of the channel (P(2)(390) and P(3)(520)) and characterized several proton transfer events. Analysis of the amide I vibrations suggests a transient increase in hydration of transmembrane α-helices with a t(1/2) = 60 µs, which tallies with the onset of cation permeation. Aspartate 253 accepts the proton released by the Schiff base (t(1/2) = 10 µs), with the latter being reprotonated by aspartic acid 156 (t(1/2) = 2 ms). The internal proton acceptor and donor groups, corresponding to D212 and D115 in bacteriorhodopsin, are clearly different from other microbial rhodopsins, indicating that their spatial position in the protein was relocated during evolution. Previous conclusions on the involvement of glutamic acid 90 in channel opening are ruled out by demonstrating that E90 deprotonates exclusively in the nonconductive P(4)(480) state. Our results merge into a mechanistic proposal that relates the observed proton transfer reactions and the protein conformational changes to the gating of the cation channel.


Assuntos
Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Conformação Proteica , Prótons , Channelrhodopsins , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos da radiação , Cinética , Lasers , Modelos Químicos , Fotoquímica , Espectroscopia de Infravermelho com Transformada de Fourier
8.
FEBS Lett ; 586(9): 1344-8, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22504075

RESUMO

Electrophysiological experiments showed that the light-activated cation channel channelrhodopsin-2 (ChR2) pumps protons in the absence of a membrane potential. We determined here the kinetics of transient pH change using a water-soluble pH-indicator. It is shown that ChR2 released protons prior to uptake with a stoichiometry of 0.3 protons per ChR2. Comparison to the photocycle kinetics revealed that proton release and uptake match rise and decay of the P(3)(520) intermediate. As the P(3)(520) state also represents the conductive state of cation channeling, the concurrence of proton pumping and channel gating implies an intimate mechanistic link of the two functional modes. Studies on the E123T and S245E mutants show that these residues are not critically involved in proton translocation.


Assuntos
Bombas de Próton/metabolismo , Prótons , Rodopsina/metabolismo , Transporte Biológico , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Estrutura Secundária de Proteína , Bombas de Próton/química , Rodopsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...