Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 351(6274): 691-5, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26912855

RESUMO

Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young's modulus of 14.5 gigapascals, with the possibility of further transfer onto flexible substrates. These materials are interesting for applications in structural energy storage, tribology, and gas separation.

2.
Rev Sci Instrum ; 85(9): 093904, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273736

RESUMO

A setup for measuring the high-frequency hysteresis loops of magnetic samples is described. An alternating magnetic field in the range 6-100 kHz with amplitude up to 80 mT is produced by a Litz wire coil. The latter is air-cooled using a forced-air approach so no water flow is required to run the setup. High-frequency hysteresis loops are measured using a system of pick-up coils and numerical integration of signals. Reproducible measurements are obtained in the frequency range of 6-56 kHz. Measurement examples on ferrite cylinders and on iron oxide nanoparticle ferrofluids are shown. Comparison with other measurement methods of the hysteresis loop area (complex susceptibility, quasi-static hysteresis loops, and calorific measurements) is provided and shows the coherency of the results obtained with this setup. This setup is well adapted to the magnetic characterization of colloidal solutions of magnetic nanoparticles for magnetic hyperthermia applications.

3.
Faraday Discuss ; 175: 97-111, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25271897

RESUMO

A variety of imaging technologies are now routinely used in the medical field, their use being continuously enlarged through the development of contrast agents. Recently nanoparticles (NPs) proved efficient to improve imaging in vivo by increasing contrast and targeting capabilities. The current trend is now focused on the development of dual contrast agents combining two or more functionalities on the same NP. Motivated by this new challenge we developed FeBi NPs as new nanomaterials with potential application as a contrast agent for MRI and CT imaging. In addition to the well-known use of iron in the development MRI contrast agents, we chose Bi as a CT imaging agent rather than the more documented gold, because it possesses a larger X-ray attenuation coefficient and is much less expensive. Two sets of NPs, with sizes around 150 nm and 14 nm, were synthesized using organometallic approaches. In both cases, the NPs are spherical, and contain distinct domains of Fe and Bi, with the surface being enriched with Fe, and a hydrophobic coating. This coating differs from one sample to the other: the surfaces of the 150 nm large NPs are coated by amine ligands, while those of the 14 nm large NPs are coated by a mixture of an amine and its hydrochloride salt. Exchange of the surface ligands to afford water soluble NPs has been attempted. We show that only the larger NPs could be functionalized with water soluble ligands, which is in agreement with the lability of their initial surface coating. Colloidal aqueous solutions of FeBi NPs with glycoPEG ligands have been obtained.


Assuntos
Bismuto , Meios de Contraste , Ferro , Imagem Molecular/métodos , Nanopartículas , Tomografia Computadorizada por Raios X , Bismuto/química , Meios de Contraste/síntese química , Meios de Contraste/química , Ferro/química , Conformação Molecular , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície
4.
Langmuir ; 30(30): 9028-35, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25000178

RESUMO

In this work, we report on the self-assembly of bimetallic CoFe carbide magnetic nanoparticles (MNPs) stabilized by a mixture of long chain surfactants. A dedicated setup, coupling dip coating and sputtering chamber, enables control of the self-assembly of MNPs from regular stripe to continuous thin films under inert atmosphere. The effects of experimental parameters, MNP concentration, withdrawal speed, amount, and nature of surfactants, as well as the surface state of the substrates are discussed. Magnetic measurements revealed that the assembled particles were not oxidized, confirming the high potentiality of our approach for the controlled deposition of highly sensitive MNPs.

5.
Phys Rev Lett ; 107(13): 130801, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026835

RESUMO

We describe herein how a nanoelectromechanical system based on a carbon nanotube used as a force sensor can enable one to assess the magnetic properties of a single and very small nano-object grafted onto the nanotube. Numerical simulations performed within the framework of the Euler-Bernoulli theory of beams predict that the magnetic field dependence of the nanotube mechanical resonance frequency is a direct probe for the nano-object magnetic properties and that a sensitivity around a few (few hundreds) Bohr magnetic moments at low temperature (room temperature) can be expected.

6.
Rev Sci Instrum ; 79(9): 093909, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19044430

RESUMO

We describe a low-cost and simple setup for hyperthermia measurements on colloidal solutions of magnetic nanoparticles (ferrofluids) with a frequency-adjustable magnetic field in the range of 5-500 kHz produced by an electromagnet. By optimizing the general conception and each component (nature of the wires, design of the electromagnet, etc.), a highly efficient setup is obtained. For instance, in a useful gap of 1.1 cm, a magnetic field of 4.8 mT is generated at 100 and 500 kHz with output powers of 3.4 and 75 W, respectively. A maximum magnetic field of 30 mT is obtained at 100 kHz. The temperature of the colloidal solution is measured using optical fiber sensors. To remove contributions due to heating of the electromagnet, a differential measurement is used. In this configuration the sensitivity is better than 1.5 mW at 100 kHz and 19.3 mT. This setup allows one to measure weak heating powers on highly diluted colloidal solutions. The hyperthermia characteristics of a solution of Fe nanoparticles are described, where both the magnetic field and the frequency dependence of heating power have been measured.


Assuntos
Desenho de Equipamento/instrumentação , Hipertermia Induzida/métodos , Magnetismo , Nanopartículas/química , Coloides , Impedância Elétrica , Campos Eletromagnéticos , Compostos Férricos/química , Hipertermia Induzida/instrumentação , Nanopartículas/ultraestrutura , Níquel/química , Fibras Ópticas , Tamanho da Partícula , Soluções/química
7.
Faraday Discuss ; 138: 181-92; discussion 211-23, 433-4, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18447016

RESUMO

The magnetism of Co-Rh nanoparticles is investigated experimentally and theoretically. The particles (approximately 2 nm) have been synthesized by decomposition of organometallic precursors in mild conditions of pressure and temperature, under hydrogen atmosphere and in the presence of a polymer matrix. The magnetic properties are determined by SQUID, Mössbauer spectroscopy, and X-ray magnetic circular dichroism (XMCD). The structural and chemical properties are characterized by wide angle X-ray scattering, transmission electronic microscopy and X-ray absorption near edge spectroscopy. All the studied Co-Rh clusters are magnetic with an average spin moment per atom mu that is larger than the one of macroscopic crystals or alloys with similar concentrations. The experimental results and comparison with theory suggest that the most likely chemical arrangement is a Rh core, with a Co-rich outer shell showing significant Co-Rh mixing at the interface. Measured and calculated magnetic anisotropy energies (MAEs) are found to be higher than in pure Co clusters. Moreover, one observes that the MAEs can be tuned to some extent by varying the Rh concentration. These trends are well accounted for by theory, which in addition reveals important spin and orbital moments induced at the Rh atoms as well as significant orbital moments at the Co atoms. These play a central role in the interpretation of experimental data as a function of Co-Rh content. A more detailed analysis from a local perspective shows that the orbital and spin moments at the Co-Rh interface are largely responsible for the enhancement of the magnetic moments and magnetic anisotropy.

8.
Nano Lett ; 8(12): 4293-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367882

RESUMO

Ferromagnetic nanomaterials exhibit unique magnetic properties common to materials with dimensions approaching the atomic scale and have potential applications in magnetic data storage. Technological applications, however, require that the detailed magnetic behaviors and configurations of individual and interacting magnetic nano-objects be clarified. We determined the magnetic remnant configurations in single crystalline 30 nm Fe nanocubes and groups of nanocubes using off-axis electron holography in a transmission electron microscope. Our measurements on an isolated cube reveal a vortex state whose core size has been determined. Two neighboring nanocubes with adjacent {100} surfaces exhibit a ferromagnetic dipolar coupling, while similar magnetic interactions between four cubes in a square arrangement induce a bending of the magnetic induction, i.e., a magnetic flux closure state. The various configurations were successfully simulated by micromagnetic calculations.

9.
Phys Rev B Condens Matter ; 53(9): 5108-5111, 1996 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-9984102
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...