Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; : 114588, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013539

RESUMO

Adipokines play crucial roles in both reproductive and energy metabolic processes. This study aimed to compare the hormonal plasma profile of adiponectin, apelin, vaspin, chemerin, resistin, visfatin, and adipolin, and the expression of their receptors in the anterior pituitary (AP) between normal-weight Large White (LW) and fat Meishan (MS) pigs during different phases of the estrous cycle. We measured adipokine levels in the plasma and assessed their gene expression in the AP. We used Pearson's correlation analysis to examine potential links between adipokines levels, their receptors, and metabolic parameters (body weight; backfat thickness) and reproductive parameters (pituitary weight; age at puberty; levels of gonadotropins, steroid hormones; and gene expression of gonadotropin-releasing hormone receptor and gonadotropins in AP). The plasma levels of the evaluated adipokines fluctuated with phase and breed, except for visfatin and adipolin. Moreover, adipokine expression in AP varied significantly between breeds and estrous cycle phases, except for resistin receptor CAP1. Notably, we observed a positive correlation between plasma levels of adiponectin and its transcript in the AP only in MS pigs. Apelin gene expression correlated negatively with its receptor in MS, while we observed a breed-dependent correlation between chemerin gene expression and its receptor CMKLR1. We identified significant positive or negative correlations between adipokines or their receptor levels in plasma and AP as well as metabolic or reproductive parameters, depending on the breed. In conclusion, we have demonstrated breed-specific and estrous cycle-dependent regulation of adipokines in AP, underscoring their potential impact on metabolic and reproductive processes in swine.

2.
Sci Rep ; 14(1): 14780, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926439

RESUMO

Previously, we demonstrated the expression of visfatin in porcine reproductive tissues and its effect on pituitary endocrinology. The objective of this study was to examine the visfatin effect on the secretion of steroid (P4, E2) and prostaglandin (PGE2, PGF2α), the mRNA and protein abundance of steroidogenic markers (STAR, CYP11A1, HSD3B, CYP19A1), prostaglandin receptors (PTGER2, PTGFR), insulin receptor (INSR), and activity of kinases (MAPK/ERK1/2, AKT, AMPK) in the porcine corpus luteum. We noted that the visfatin effect strongly depends on the phase of the estrous cycle: on days 2-3 and 14-16 it reduced P4, while on days 10-12 it stimulated P4. Visfatin increased secretion of E2 on days 2-3, PGE2 on days 2-3 and 10-12, reduced PGF2α release on days 14-16, as well as stimulated the expression of steroidogenic markers on days 10-12 of the estrous cycle. Moreover, visfatin elevated PTGER mRNA expression and decreased its protein level, while we noted the opposite changes for PTGFR. Additionally, visfatin activated ERK1/2, AKT, and AMPK, while reduced INSR phosphorylation. Interestingly, after inhibition of INSR and signalling pathways visfatin action was abolished. These findings suggest a regulatory role of visfatin in the porcine corpus luteum.


Assuntos
Corpo Lúteo , Nicotinamida Fosforribosiltransferase , Animais , Corpo Lúteo/metabolismo , Corpo Lúteo/efeitos dos fármacos , Feminino , Suínos , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Ciclo Estral/metabolismo , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Progesterona/metabolismo , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Dinoprosta/metabolismo
3.
Adv Clin Chem ; 121: 172-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797542

RESUMO

Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.


Assuntos
Adipocinas , Gravidez , Humanos , Adipocinas/metabolismo , Feminino , Animais , Placenta/metabolismo , Diabetes Gestacional/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...