Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(16): 11335-11342, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895996

RESUMO

Agricultural intensification in India has increased nitrogen pollution, leading to water quality impairments. The fate of reactive nitrogen applied to the land is largely unknown, however. Long-term records of riverine nitrogen fluxes are nonexistent and drivers of variability remain unexamined, limiting the development of nitrogen management strategies. Here, we leverage dissolved inorganic nitrogen (DIN) and discharge data to characterize the seasonal, annual, and regional variability of DIN fluxes and their drivers for seven major river basins from 1981 to 2014. We find large seasonal and interannual variability in nitrogen runoff, with 68% to 94% of DIN fluxes occurring in June through October and with the coefficient of variation across years ranging from 44% to 93% for individual basins. This variability is primarily explained by variability in precipitation, with year- and basin-specific annual precipitation explaining 52% of the combined regional and interannual variability. We find little correlation with rising fertilizer application rates in five of the seven basins, implying that agricultural intensification has thus far primarily impacted groundwater and atmospheric emissions rather than riverine runoff. These findings suggest that riverine nitrogen runoff in India is highly sensitive to projected future increases in precipitation and intensification of the seasonal monsoon, while the impact of projected continued land use intensification is highly uncertain.


Assuntos
Monitoramento Ambiental , Nitrogênio , Fertilizantes , Nitrogênio/análise , Rios , Qualidade da Água
2.
Nature ; 603(7901): 401-410, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296840

RESUMO

Carbon storage by the ocean and by the land is usually quantified separately, and does not fully take into account the land-to-ocean transport of carbon through inland waters, estuaries, tidal wetlands and continental shelf waters-the 'land-to-ocean aquatic continuum' (LOAC). Here we assess LOAC carbon cycling before the industrial period and perturbed by direct human interventions, including climate change. In our view of the global carbon cycle, the traditional 'long-range loop', which carries carbon from terrestrial ecosystems to the open ocean through rivers, is reinforced by two 'short-range loops' that carry carbon from terrestrial ecosystems to inland waters and from tidal wetlands to the open ocean. Using a mass-balance approach, we find that the pre-industrial uptake of atmospheric carbon dioxide by terrestrial ecosystems transferred to the ocean and outgassed back to the atmosphere amounts to 0.65 ± 0.30 petagrams of carbon per year (±2 sigma). Humans have accelerated the cycling of carbon between terrestrial ecosystems, inland waters and the atmosphere, and decreased the uptake of atmospheric carbon dioxide from tidal wetlands and submerged vegetation. Ignoring these changing LOAC carbon fluxes results in an overestimation of carbon storage in terrestrial ecosystems by 0.6 ± 0.4 petagrams of carbon per year, and an underestimation of sedimentary and oceanic carbon storage. We identify knowledge gaps that are key to reduce uncertainties in future assessments of LOAC fluxes.


Assuntos
Dióxido de Carbono , Ecossistema , Oceanos e Mares , Atmosfera , Ciclo do Carbono , Atividades Humanas , Humanos , Rios
3.
Global Biogeochem Cycles ; 33(11): 1370-1388, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32025087

RESUMO

New estimates of pCO2 from profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project have demonstrated the importance of wintertime outgassing south of the Polar Front, challenging the accepted magnitude of Southern Ocean carbon uptake (Gray et al., 2018, https://doi:10.1029/2018GL078013). Here, we put 3.5 years of SOCCOM observations into broader context with the global surface carbon dioxide database (Surface Ocean CO2 Atlas, SOCAT) by using the two interpolation methods currently used to assess the ocean models in the Global Carbon Budget (Le Quéré et al., 2018, https://doi:10.5194/essd-10-2141-2018) to create a ship-only, a float-weighted, and a combined estimate of Southern Ocean carbon fluxes (<35°S). In our ship-only estimate, we calculate a mean uptake of -1.14 ± 0.19 Pg C/yr for 2015-2017, consistent with prior studies. The float-weighted estimate yields a significantly lower Southern Ocean uptake of -0.35 ± 0.19 Pg C/yr. Subsampling of high-resolution ocean biogeochemical process models indicates that some of the differences between float and ship-only estimates of the Southern Ocean carbon flux can be explained by spatial and temporal sampling differences. The combined ship and float estimate minimizes the root-mean-square pCO2 difference between the mapped product and both data sets, giving a new Southern Ocean uptake of -0.75 ± 0.22 Pg C/yr, though with uncertainties that overlap the ship-only estimate. An atmospheric inversion reveals that a shift of this magnitude in the contemporary Southern Ocean carbon flux must be compensated for by ocean or land sinks within the Southern Hemisphere.

5.
Proc Natl Acad Sci U S A ; 114(39): 10361-10366, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893986

RESUMO

A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm-1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.


Assuntos
Atmosfera/análise , Dióxido de Carbono/análise , Mudança Climática , Plantas/metabolismo , Água/metabolismo , Ciclo do Carbono/fisiologia , Isótopos de Carbono/análise , Combustíveis Fósseis/análise , Fotossíntese/fisiologia
6.
Proc Natl Acad Sci U S A ; 112(32): 9950-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216947

RESUMO

Global ocean acidification is caused primarily by the ocean's uptake of CO2 as a consequence of increasing atmospheric CO2 levels. We present observations of the oceanic decrease in pH at the basin scale (50 °S-36 °N) for the Atlantic Ocean over two decades (1993-2013). Changes in pH associated with the uptake of anthropogenic CO2 (ΔpHCant) and with variations caused by biological activity and ocean circulation (ΔpHNat) are evaluated for different water masses. Output from an Institut Pierre Simon Laplace climate model is used to place the results into a longer-term perspective and to elucidate the mechanisms responsible for pH change. The largest decreases in pH (∆pH) were observed in central, mode, and intermediate waters, with a maximum ΔpH value in South Atlantic Central Waters of -0.042 ± 0.003. The ΔpH trended toward zero in deep and bottom waters. Observations and model results show that pH changes generally are dominated by the anthropogenic component, which accounts for rates between -0.0015 and -0.0020/y in the central waters. The anthropogenic and natural components are of the same order of magnitude and reinforce one another in mode and intermediate waters over the time period. Large negative ΔpHNat values observed in mode and intermediate waters are driven primarily by changes in CO2 content and are consistent with (i) a poleward shift of the formation region during the positive phase of the Southern Annular Mode in the South Atlantic and (ii) an increase in the rate of the water mass formation in the North Atlantic.


Assuntos
Ácidos/química , Água/química , Oceano Atlântico , Atividades Humanas , Humanos , Concentração de Íons de Hidrogênio , Água do Mar/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...